Do you want to publish a course? Click here

First-Principles Design of Halide-Reduced Electrides: Magnetism and Topological Phases

72   0   0.0 ( 0 )
 Added by Tonghua Yu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a design scheme for potential electrides derived from conventional materials. Starting with rare-earth-based ternary halides, we exclude halogens and perform global structure optimization to obtain thermodynamically stable or metastable phases but having an excess of electrons confined inside interstitial cavities. Then, spin-polarized interstitial states are induced by chemical substitution with magnetic lanthanides. To demonstrate the capability of our approach, we test with 11 ternary halides and successfully predict 30 stable and metastable phases of nonmagnetic electrides subject to 3 different stoichiometric categories, and successively 28 magnetic electrides via chemical substitution with Gd. 56 out of these 58 designed electrides are discovered for the first time. Two electride systems, the monoclinic $A$C ($A=$ La, Gd) and the orthorhombic $A_2$Ge ($A=$ Y, Gd), are thoroughly studied to exemplify the set of predicted crystals. Interestingly, both systems turn out to be topological nodal line electrides (TNLE) in the absence of spin-orbit coupling and manifest spin-polarized interstitial states in the case of $A=$ Gd. Our work establishes a novel computational approach of functional electrides design and highlights the magnetism and topological phases embedded in electrides.

rate research

Read More

We report the understanding of the electronic band structure of $Cs_4CuSb_2Cl_{12}$ perovskite through first-principles density-functional theory calculations. We find that the most stable state has the antiferromagnetic configuration where each $[CuCl_6]$ octahedral chain along the [010] direction is antiferromagnetic. The reasonable band structure of the compound can be obtained only if both the correct magnetic order and the improved exchange interaction of the Cu $it{d}$ electrons are taken into account.
The lattice dynamics of the $rm YMnO_3$ magneto-electric compound has been investigated using density functional calculations, both in the ferroelectric and the paraelectric phases. The coherence between the computed and experimental data is very good in the low temperature phase. Using group theory, modes continuity and our calculations we were able to show that the phonons modes observed by Raman scattering at 1200K are only compatible with the ferroelectric $P6_{3} cm$ space group, thus supporting the idea of a ferroelectric to paraelectric phase transition at higher temperature. Finally we proposed a candidate for the phonon part of the observed electro-magnon. This mode, inactive both in Raman scattering and in Infra-Red, was shown to strongly couple to the Mn-Mn magnetic interactions.
We present an ab initio simulation of $90^{circ}$ ferroelastic twins that were recently observed in methyl ammonium lead iodide. There are two inequivalent types of $90^{circ}$ walls that we calculate to act as either electron or hole sinks which suggests a possible route to enhancing charge carrier separation in photovoltaic devices. Despite separating non-polar domains, we show these walls to have a substantial in-plane polarisation of $sim 6 phantom{|} mu text{C}phantom{|}text{cm}^{-2}$, due in part to flexoelectricity. We suggest this in turn could allow for the photoferroic effect and create efficient pathways for photocurrents within the wall.
The nature of the interaction between magnetism and topology in magnetic topological semimetals remains mysterious, but may be expected to lead to a variety of novel physics. We present $ab$ $initio$ band calculations, electrical transport and angle-resolved photoemission spectroscopy (ARPES) measurements on the magnetic semimetal EuAs$_3$, demonstrating a magnetism-induced topological transition from a topological nodal-line semimetal in the paramagnetic or the spin-polarized state to a topological massive Dirac metal in the antiferromagnetic (AFM) ground state at low temperature, featuring a pair of massive Dirac points, inverted bands and topological surface states on the (010) surface. Shubnikov-de Haas (SdH) oscillations in the AFM state identify nonzero Berry phase and a negative longitudinal magnetoresistance ($n$-LMR) induced by the chiral anomaly, confirming the topological nature predicted by band calculations. When magnetic moments are fully polarized by an external magnetic field, an unsaturated and extremely large magnetoresistance (XMR) of $sim$ 2$times10^5$ % at 1.8 K and 28.3 T is observed, likely arising from topological protection. Consistent with band calculations for the spin-polarized state, four new bands in quantum oscillations different from those in the AFM state are discerned, of which two are topologically protected. Nodal-line structures at the $Y$ point in the Brillouin zone (BZ) are proposed in both the spin-polarized and paramagnetic states, and the latter is proven by ARPES. Moreover, a temperature-induced Lifshitz transition accompanied by the emergence of a new band below 3 K is revealed. These results indicate that magnetic EuAs$_3$ provides a rich platform to explore exotic physics arising from the interaction of magnetism with topology.
The electronic structure and properties of PuO$_{2}$ and Pu$_{2}$O$_{3}$ have been studied from first principles by the all-electron projector-augmented-wave (PAW) method. The local density approximation (LDA)+$U$ and the generalized gradient approximation (GGA)+$U$ formalism have been used to account for the strong on-site Coulomb repulsion among the localized Pu $5f$ electrons. We discuss how the properties of PuO$_{2}$ and Pu$_{2}$O$_{3}$ are affected by the choice of $U$ as well as the choice of exchange-correlation potential. Also, oxidation reaction of Pu$_{2}$O$_{3}$, leading to formation of PuO$_{2}$, and its dependence on $U$ and exchange-correlation potential have been studied. Our results show that by choosing an appropriate $U$ it is promising to correctly and consistently describe structural, electronic, and thermodynamic properties of PuO$_{2}$ and Pu$_{2}$O$_{3}$, which enables it possible the modeling of redox process involving Pu-based materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا