Do you want to publish a course? Click here

Blockchain based Attack Detection on Machine Learning Algorithms for IoT based E-Health Applications

285   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The application of machine learning (ML) algorithms are massively scaling-up due to rapid digitization and emergence of new tecnologies like Internet of Things (IoT). In todays digital era, we can find ML algorithms being applied in the areas of healthcare, IoT, engineering, finance and so on. However, all these algorithms need to be trained in order to predict/solve a particular problem. There is high possibility of tampering the training datasets and produce biased results. Hence, in this article, we have proposed blockchain based solution to secure the datasets generated from IoT devices for E-Health applications. The proposed blockchain based solution uses using private cloud to tackle the aforementioned issue. For evaluation, we have developed a system that can be used by dataset owners to secure their data.



rate research

Read More

As Internet of Things (IoT) has emerged as the next logical stage of the Internet, it has become imperative to understand the vulnerabilities of the IoT systems when supporting diverse applications. Because machine learning has been applied in many IoT systems, the security implications of machine learning need to be studied following an adversarial machine learning approach. In this paper, we propose an adversarial machine learning based partial-model attack in the data fusion/aggregation process of IoT by only controlling a small part of the sensing devices. Our numerical results demonstrate the feasibility of this attack to disrupt the decision making in data fusion with limited control of IoT devices, e.g., the attack success rate reaches 83% when the adversary tampers with only 8 out of 20 IoT devices. These results show that the machine learning engine of IoT system is highly vulnerable to attacks even when the adversary manipulates a small portion of IoT devices, and the outcome of these attacks severely disrupts IoT system operations.
Internet of things (IoT) that integrate a variety of devices into networks to provide advanced and intelligent services have to protect user privacy and address attacks such as spoofing attacks, denial of service attacks, jamming and eavesdropping. In this article, we investigate the attack model for IoT systems, and review the IoT security solutions based on machine learning techniques including supervised learning, unsupervised learning and reinforcement learning. We focus on the machine learning based IoT authentication, access control, secure offloading and malware detection schemes to protect data privacy. In this article, we discuss the challenges that need to be addressed to implement these machine learning based security schemes in practical IoT systems.
Authorization or access control limits the actions a user may perform on a computer system, based on predetermined access control policies, thus preventing access by illegitimate actors. Access control for the Internet of Things (IoT) should be tailored to take inherent IoT network scale and device resource constraints into consideration. However, common authorization systems in IoT employ conventional schemes, which suffer from overheads and centralization. Recent research trends suggest that blockchain has the potential to tackle the issues of access control in IoT. However, proposed solutions overlook the importance of building dynamic and flexible access control mechanisms. In this paper, we design a decentralized attribute-based access control mechanism with an auxiliary Trust and Reputation System (TRS) for IoT authorization. Our system progressively quantifies the trust and reputation scores of each node in the network and incorporates the scores into the access control mechanism to achieve dynamic and flexible access control. We design our system to run on a public blockchain, but we separate the storage of sensitive information, such as users attributes, to private sidechains for privacy preservation. We implement our solution in a public Rinkeby Ethereum test-network interconnected with a lab-scale testbed. Our evaluations consider various performance metrics to highlight the applicability of our solution for IoT contexts.
Security and privacy of the users have become significant concerns due to the involvement of the Internet of things (IoT) devices in numerous applications. Cyber threats are growing at an explosive pace making the existing security and privacy measures inadequate. Hence, everyone on the Internet is a product for hackers. Consequently, Machine Learning (ML) algorithms are used to produce accurate outputs from large complex databases, where the generated outputs can be used to predict and detect vulnerabilities in IoT-based systems. Furthermore, Blockchain (BC) techniques are becoming popular in modern IoT applications to solve security and privacy issues. Several studies have been conducted on either ML algorithms or BC techniques. However, these studies target either security or privacy issues using ML algorithms or BC techniques, thus posing a need for a combined survey on efforts made in recent years addressing both security and privacy issues using ML algorithms and BC techniques. In this paper, we provide a summary of research efforts made in the past few years, starting from 2008 to 2019, addressing security and privacy issues using ML algorithms and BCtechniques in the IoT domain. First, we discuss and categorize various security and privacy threats reported in the past twelve years in the IoT domain. Then, we classify the literature on security and privacy efforts based on ML algorithms and BC techniques in the IoT domain. Finally, we identify and illuminate several challenges and future research directions in using ML algorithms and BC techniques to address security and privacy issues in the IoT domain.
Characteristics and way of behavior of attacks and infiltrators on computer networks are usually very difficult and need an expert In addition; the advancement of computer networks, the number of attacks and infiltrations are also increasing. In fact, the knowledge coming from an expert will lose its value over time and must be updated and made available to the system and this makes the need for the expert person always felt. In machine learning techniques, knowledge is extracted from the data itself which has diminished the role of the expert. Various methods used to detect intrusions, such as statistical models, safe system approach, neural networks, etc., all weaken the fact that it uses all the features of an information packet rotating in the network for intrusion detection. Also, the huge volume of information and the unthinkable state space is also an important issue in the detection of intrusion. Therefore, the need for automatic identification of new and suspicious patterns in an attempt for intrusion with the use of more efficient methods Lower cost and higher performance is needed more than before. The purpose of this study is to provide a new method based on intrusion detection systems and its various architectures aimed at increasing the accuracy of intrusion detection in cloud computing. Keywords : intrusion detection, feature Selection, classification Algorithm, machine learning, neural network.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا