No Arabic abstract
In this paper we propose a data-driven model for the spread of SARS-CoV-2 and use it to design optimal control strategies of human-mobility restrictions that both curb the epidemic and minimize the economic costs associated with implementing non-pharmaceutical interventions. We develop an extension of the SEIR epidemic model that captures the effects of changes in human mobility on the spread of the disease. The parameters of our data-driven model are learned using a multitask learning approach that leverages both data on the number of deaths across a set of regions, and cellphone data on individuals mobility patterns specific to each region. We propose an optimal control problem on this data-driven model with a tractable solution provided by geometric programming. The result of this framework is a mobility-based intervention strategy that curbs the spread of the epidemic while obeying a budget on the economic cost incurred. Furthermore, in the absence of a straightforward mapping from human mobility data to economic costs, we propose a practical method by which a budget on economic losses incurred may be chosen to eliminate excess deaths due to over-utilization of hospital resources. Our results are demonstrated with numerical simulations using real data from the Philadelphia metropolitan area.
Infectious diseases and human behavior are intertwined. On one side, our movements and interactions are the engines of transmission. On the other, the unfolding of viruses might induce changes to our daily activities. While intuitive, our understanding of such feedback loop is still limited. Before COVID-19 the literature on the subject was mainly theoretical and largely missed validation. The main issue was the lack of empirical data capturing behavioral change induced by diseases. Things have dramatically changed in 2020. Non-pharmaceutical interventions (NPIs) have been the key weapon against the SARS-CoV-2 virus and affected virtually any societal process. Travels bans, events cancellation, social distancing, curfews, and lockdowns have become unfortunately very familiar. The scale of the emergency, the ease of survey as well as crowdsourcing deployment guaranteed by the latest technology, several Data for Good programs developed by tech giants, major mobile phone providers, and other companies have allowed unprecedented access to data describing behavioral changes induced by the pandemic. Here, I aim to review some of the vast literature written on the subject of NPIs during the COVID-19 pandemic. In doing so, I analyze 347 articles written by more than 2518 of authors in the last $12$ months. While the large majority of the sample was obtained by querying PubMed, it includes also a hand-curated list. Considering the focus, and methodology I have classified the sample into seven main categories: epidemic models, surveys, comments/perspectives, papers aiming to quantify the effects of NPIs, reviews, articles using data proxies to measure NPIs, and publicly available datasets describing NPIs. I summarize the methodology, data used, findings of the articles in each category and provide an outlook highlighting future challenges as well as opportunities
We develop a novel hybrid epidemiological model and a specific methodology for its calibration to distinguish and assess the impact of mobility restrictions (given by Apples mobility trends data) from other complementary non-pharmaceutical interventions (NPIs) used to control the spread of COVID-19. Using the calibrated model, we estimate that mobility restrictions contribute to 47 % (US States) and 47 % (worldwide) of the overall suppression of the disease transmission rate using data up to 13/08/2020. The forecast capacity of our model was evaluated doing four-weeks ahead predictions. Using data up to 30/06/20 for calibration, the mean absolute percentage error (MAPE) of the prediction of cumulative deceased individuals was 5.0 % for the United States (51 states) and 6.7 % worldwide (49 countries). This MAPE was reduced to 3.5% for the US and 3.8% worldwide using data up to 13/08/2020. We find that the MAPE was higher for the total confirmed cases at 11.5% worldwide and 10.2% for the US States using data up to 13/08/2020. Our calibrated model achieves an average R-Squared value for cumulative confirmed and deceased cases of 0.992 using data up to 30/06/20 and 0.98 using data up to 13/08/20.
We present modeling of the COVID-19 epidemic in Illinois, USA, capturing the implementation of a Stay-at-Home order and scenarios for its eventual release. We use a non-Markovian age-of-infection model that is capable of handling long and variable time delays without changing its model topology. Bayesian estimation of model parameters is carried out using Markov Chain Monte Carlo (MCMC) methods. This framework allows us to treat all available input information, including both the previously published parameters of the epidemic and available local data, in a uniform manner. To accurately model deaths as well as demand on the healthcare system, we calibrate our predictions to total and in-hospital deaths as well as hospital and ICU bed occupancy by COVID-19 patients. We apply this model not only to the state as a whole but also its sub-regions in order to account for the wide disparities in population size and density. Without prior information on non-pharmaceutical interventions (NPIs), the model independently reproduces a mitigation trend closely matching mobility data reported by Google and Unacast. Forward predictions of the model provide robust estimates of the peak position and severity and also enable forecasting the regional-dependent results of releasing Stay-at-Home orders. The resulting highly constrained narrative of the epidemic is able to provide estimates of its unseen progression and inform scenarios for sustainable monitoring and control of the epidemic.
Testing for the infected cases is one of the most important mechanisms to control an epidemic. It enables to isolate the detected infected individuals, thereby limiting the disease transmission to the susceptible population. However, despite the significance of testing policies, the recent literature on the subject lacks a control-theoretic perspective. In this work, an epidemic model that incorporates the testing rate as a control input is presented. The proposed model differentiates the undetected infected from the detected infected cases, who are assumed to be removed from the disease spreading process in the population. First, the model is estimated and validated for COVID-19 data in France. Then, two testing policies are proposed, the so-called best-effort strategy for testing (BEST) and constant optimal strategy for testing (COST). The BEST policy is a suppression strategy that provides a lower bound on the testing rate such that the epidemic switches from a spreading to a non-spreading state. The COST policy is a mitigation strategy that provides an optimal value of testing rate that minimizes the peak value of the infected population when the total stockpile of tests is limited. Both testing policies are evaluated by predicting the number of active intensive care unit (ICU) cases and the cumulative number of deaths due to COVID-19.
Stochastic model predictive control (SMPC) has been a promising solution to complex control problems under uncertain disturbances. However, traditional SMPC approaches either require exact knowledge of probabilistic distributions, or rely on massive scenarios that are generated to represent uncertainties. In this paper, a novel scenario-based SMPC approach is proposed by actively learning a data-driven uncertainty set from available data with machine learning techniques. A systematical procedure is then proposed to further calibrate the uncertainty set, which gives appropriate probabilistic guarantee. The resulting data-driven uncertainty set is more compact than traditional norm-based sets, and can help reducing conservatism of control actions. Meanwhile, the proposed method requires less data samples than traditional scenario-based SMPC approaches, thereby enhancing the practicability of SMPC. Finally the optimal control problem is cast as a single-stage robust optimization problem, which can be solved efficiently by deriving the robust counterpart problem. The feasibility and stability issue is also discussed in detail. The efficacy of the proposed approach is demonstrated through a two-mass-spring system and a building energy control problem under uncertain disturbances.