No Arabic abstract
Using JVLA data obtained from high-resolution observations at 5.5 GHz at multiple epochs in 2014 and 2019, we have detected a population of radio variables and transients in the radio bright zone at the Galactic center. With observations covering a sky area of 180 arcmin$^2$ at an angular resolution of 0.4 arcsec, we report new detections of 110 Galactic center compact radio (GCCR) sources with a size of $<1$ arcsec. The flux densities of GCCRs exceed 70 $mu$Jy, with at least 10$sigma$ significance. Among these sources, 82 are variable or transient and 28 are non-variable. About 10% of them are expected to be extragalactic background sources. We discuss the possible astrophysical nature of the detected sources. As compared to the Galactic disk (GD) population of normal pulsars (NPs) and millisecond pulsars (MSPs), a majority (80%) of the GCCRs appears to fall within the high flux-density tail of the pulsar distribution, as extrapolated from a sample of NPs in the Galactic disk. However, MSPs extrapolated from the GD population are too weak to have contributed significantly to the GCCR population that have been detected. We also cross-correlated the GCCRs with X-ray sources in Chandra X-ray catalogs and found that 42 GCCRs have candidate X-ray counterparts. Most of the GCCRs having X-ray counterparts are likely to be associated with unresolved or slightly resolved radio jets launched from X-ray binaries with a compact object, either a black hole or a neutron star.
The radio bright zone (RBZ) at the Galactic center has been observed with the JVLA in the A, B and C array configurations at 5.5 and 9 GHz. With a procedure for high-dynamic range imaging developed on CASA, we constructed deep images a resolution up to 0.2, achieving rms noises of a few $mu$Jy/beam. From the high-resolution and high-dynamics range images at 5.5 and 9 GHz, a population of compact radio sources ranging from a few mJy to a few tens $mu$Jy in flux density is revealed. The steep-spectrum radio sources in RBZ are likely the candidates of high-energy objects that are associated with neutron stars and/or stellar mass black holes at the Galactic center. We report new results of the Cannonball and Galactic center transient (GCT).
New observations of Sgr A have been carried out with the VLA using the broadband (2 GHz) continuum mode at 5.5 GHz, covering the central 30 pc region of the RBZ at the Galactic center. Using the MS-MFS algorithms in CASA, we have imaged Sgr A with a resolution of 1, achieving an rms 8 $mu$Jy/beam, and a dynamic range 100,000:1.The radio image is compared with X-ray, CN emission-line and Paschen-$alpha$ images obtained using Chandra, SMA and HST/NICMOS, respectively. We discuss several prominent radio features. The Sgr A West Wings extend 5 pc from the NW and SE tips of the ionized Mini-spiral in Sgr A West to positions located 2.9 and 2.4 arc min to the NW and SE of Sgr A*, respectively. The NW wing, along with several other prominent features, including the NW Streamers, form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 14.4 pc x 7.3 pc, has a known X-ray counterpart. A row of three thermally emitting rings is observed in the NW lobe. A field containing numerous amorphous radio blobs extends for a distance of ~2 arc min beyond the tip of the SE wing; these features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-$alpha$ counterparts, suggesting that a shock interaction of ambient gas concentrations with a collimated nuclear wind (outflow) that may be driven by radiation force from the central star cluster within the CND. Finally, we remark on a prominent radio feature located within the shell of the Sgr A East SNR. Because this feature -- the Sigma Front -- correlates well in shape and orientation with the nearby edge of the CND, we propose that it is a reflected shock wave resulting from the impact of the Sgr A East blast wave on the CND.
We report the detection of a new radio transient source, GCRT J1746-2757, located only 1.1 degrees north of the Galactic center. Consistent with other radio transients toward the Galactic center, this source brightened and faded on a time scale of a few months. No X-ray counterpart was detected. We also report new 0.33 GHz measurements of the radio counterpart to the X-ray transient source, XTE J1748-288, previously detected and monitored at higher radio frequencies. We show that the spectrum of XTE J1748-288 steepened considerably during a period of a few months after its peak. We also discuss the need for a more efficient means of finding additional radio transients.
We investigate the relation between the radio (F_r) and optical (F_o) flux densities of a variety of classes of radio transients and variables, with the aim of analysing whether this information can be used, in the future, to classify such events. Using flux density values between 1-10 GHz and the optical bands V and R, we build a sample with a total of 12,441 F_r and F_o measurements. The sample contains both Galactic objects, such as stellar sources and X-ray binaries, and extragalactic objects, such as gamma-ray bursts and quasars. By directly comparing the two parameters, it is already possible to distinguish between the Galactic and extragalactic populations. Although individual classes are harder to separate from the F_r-F_o parameter space to a high accuracy, and can only provide approximations, the basic approach provides an already useful foundation to develop a more accurate classification technique. In addition, we illustrate how example objects from different classes move in the parameter space as they evolve over time, offering a feature that could be used to reduce the confusion between classes. A small, blind test of the classification performance is also undertaken using a catalogue of FIRST transient and variable sources, to demonstrate the advantages and current limitations of the approach. With more multi-wavelength data becoming available in the future, we discuss other classification techniques which the F_r-F_o method could be combined with and potentially become an important part of an automatic radio transient classification system.
We report on the first millisecond timescale radio interferometric search for the new class of transient known as fast radio bursts (FRBs). We used the Very Large Array (VLA) for a 166-hour, millisecond imaging campaign to detect and precisely localize an FRB. We observed at 1.4 GHz and produced visibilities with 5 ms time resolution over 256 MHz of bandwidth. Dedispersed images were searched for transients with dispersion measures from 0 to 3000 pc/cm3. No transients were detected in observations of high Galactic latitude fields taken from September 2013 though October 2014. Observations of a known pulsar show that images typically had a thermal-noise limited sensitivity of 120 mJy/beam (8 sigma; Stokes I) in 5 ms and could detect and localize transients over a wide field of view. Our nondetection limits the FRB rate to less than 7e4/sky/day (95% confidence) above a fluence limit of 1.2 Jy-ms. Assuming a Euclidean flux distribution, the VLA rate limit is inconsistent with the published rate of Thornton et al. We recalculate previously published rates with a homogeneous consideration of the effects of primary beam attenuation, dispersion, pulse width, and sky brightness. This revises the FRB rate downward and shows that the VLA observations had a roughly 60% chance of detecting a typical FRB and that a 95% confidence constraint would require roughly 500 hours of similar VLA observing. Our survey also limits the repetition rate of an FRB to 2 times less than any known repeating millisecond radio transient.