Do you want to publish a course? Click here

A scalable exponential-DG approach for nonlinear conservation laws: with application to Burger and Euler equations

145   0   0.0 ( 0 )
 Added by Shinhoo Kang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose an Exponential DG approach for numerically solving partial differential equations (PDEs). The idea is to decompose the governing PDE operators into linear (fast dynamics extracted by linearization) and nonlinear (the remaining after removing the former) parts, on which we apply the discontinuous Galerkin (DG) spatial discretization. The resulting semi-discrete system is then integrated using exponential time-integrators: exact for the former and approximate for the latter. By construction, our approach i) is stable with a large Courant number (Cr > 1); ii) supports high-order solutions both in time and space; iii) is computationally favorable compared to IMEX DG methods with no preconditioner; iv) requires comparable computational time compared to explicit RKDG methods, while having time stepsizes orders magnitude larger than maximal stable time stepsizes for explicit RKDG methods; v) is scalable in a modern massively parallel computing architecture by exploiting Krylov-subspace matrix-free exponential time integrators and compact communication stencil of DG methods. Various numerical results for both Burgers and Euler equations are presented to showcase these expected properties. For Burgers equation, we present detailed stability and convergence analyses for the exponential Euler DG scheme.



rate research

Read More

105 - Min Zhang , Weizhang Huang , 2021
The selection of time step plays a crucial role in improving stability and efficiency in the Discontinuous Galerkin (DG) solution of hyperbolic conservation laws on adaptive moving meshes that typically employs explicit stepping. A commonly used selection of time step has been based on CFL conditions established for fixed and uniform meshes. This work provides a mathematical justification for those time step selection strategies used in practical adaptive DG computations. A stability analysis is presented for a moving mesh DG method for linear scalar conservation laws. Based on the analysis, a new selection strategy of the time step is proposed, which takes into consideration the coupling of the $alpha$-function (that is related to the eigenvalues of the Jacobian matrix of the flux and the mesh movement velocity) and the heights of the mesh elements. The analysis also suggests several stable combinations of the choices of the $alpha$-function in the numerical scheme and in the time step selection. Numerical results obtained with a moving mesh DG method for Burgers and Euler equations are presented.
A series of shock capturing schemes based on nonuniform nonlinear weighted interpolation on nonuniform points are developed for conservation laws. Smoothness indicator and discrete conservation laws are discussed. To make fair comparisons between different types of schemes, the properties of eigenvalues of spatial discretization matrices are proved. And the proposed schemes are compared with Weighted Compact Nonlinear Schemes (WCNS) and Flux Reconstruction or Correction Procedure via Reconstruction (FR/CPR) in dispersion, dissipation properties and numerical accuracy. Then, the proposed shock capturing schemes are used as subcell limiters for high-order FR/CPR and the hybrid scheme has superiority in data transformation and satisfying discrete conservation laws. Accuracy, discrete conservation laws and shock capturing properties are tested. Numerical results in one and two dimensions are provided to illustrate that the proposed schemes have good properties in shock capturing and can be applied as subcell limiters for FR/CPR.
We formulate an oversampled radial basis function generated finite difference (RBF-FD) method to solve time-dependent nonlinear conservation laws. The analytic solutions of these problems are known to be discontinuous, which leads to occurrence of non-physical oscillations (Gibbs phenomenon) that pollute the numerical solutions and can make them unstable. We address these difficulties using a residual based artificial viscosity stabilization, where the residual of the conservation law indicates the approximate location of the shocks. The location is then used to locally apply an upwind viscosity term, which stabilizes the Gibbs phenomenon and does not smear the solution away from the shocks. The proposed method is numerically tested and proves to be robust and accurate when solving scalar conservation laws and systems of conservation laws, such as compressible Euler equations.
162 - Zhuang Zhao , Jianxian Qiu 2020
In this paper, a fifth-order Hermite weighted essentially non-oscillatory (HWENO) scheme with artificial linear weights is proposed for one and two dimensional hyperbolic conservation laws, where the zeroth-order and the first-order moments are used in the spatial reconstruction. We construct the HWENO methodology using a nonlinear convex combination of a high degree polynomial with several low degree polynomials, and the associated linear weights can be any artificial positive numbers with only requirement that their summation equals one. The one advantage of the HWENO scheme is its simplicity and easy extension to multi-dimension in engineering applications for we can use any artificial linear weights which are independent on geometry of mesh. The another advantage is its higher order numerical accuracy using less candidate stencils for two dimensional problems. In addition, the HWENO scheme still keeps the compactness as only immediate neighbor information is needed in the reconstruction and has high efficiency for directly using linear approximation in the smooth regions. In order to avoid nonphysical oscillations nearby strong shocks or contact discontinuities, we adopt the thought of limiter for discontinuous Galerkin method to control the spurious oscillations. Some benchmark numerical tests are performed to demonstrate the capability of the proposed scheme.
In this paper, we propose a hybrid finite volume Hermite weighted essentially non-oscillatory (HWENO) scheme for solving one and two dimensional hyperbolic conservation laws. The zeroth-order and the first-order moments are used in the spatial reconstruction, with total variation diminishing Runge-Kutta time discretization. The main idea of the hybrid HWENO scheme is that we first use a shock-detection technique to identify the troubled cell, then, if the cell is identified as a troubled cell, we would modify the first order moment in the troubled cell and employ HWENO reconstruction in spatial discretization; otherwise, we directly use high order linear reconstruction. Unlike other HWENO schemes, we borrow the thought of limiter for discontinuous Galerkin (DG) method to control the spurious oscillations, after this procedure, the scheme would avoid the oscillations by using HWENO reconstruction nearby discontinuities and have higher efficiency for using linear approximation straightforwardly in the smooth regions. In addition, the hybrid HWENO scheme still keeps the compactness. A collection of benchmark numerical tests for one and two dimensional cases are performed to demonstrate the numerical accuracy, high resolution and robustness of the proposed scheme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا