Do you want to publish a course? Click here

Useful Policy Invariant Shaping from Arbitrary Advice

66   0   0.0 ( 0 )
 Added by Paniz Behboudian
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Reinforcement learning is a powerful learning paradigm in which agents can learn to maximize sparse and delayed reward signals. Although RL has had many impressive successes in complex domains, learning can take hours, days, or even years of training data. A major challenge of contemporary RL research is to discover how to learn with less data. Previous work has shown that domain information can be successfully used to shape the reward; by adding additional reward information, the agent can learn with much less data. Furthermore, if the reward is constructed from a potential function, the optimal policy is guaranteed to be unaltered. While such potential-based reward shaping (PBRS) holds promise, it is limited by the need for a well-defined potential function. Ideally, we would like to be able to take arbitrary advice from a human or other agent and improve performance without affecting the optimal policy. The recently introduced dynamic potential based advice (DPBA) method tackles this challenge by admitting arbitrary advice from a human or other agent and improves performance without affecting the optimal policy. The main contribution of this paper is to expose, theoretically and empirically, a flaw in DPBA. Alternatively, to achieve the ideal goals, we present a simple method called policy invariant explicit shaping (PIES) and show theoretically and empirically that PIES succeeds where DPBA fails.



rate research

Read More

In many real-world applications of reinforcement learning (RL), interactions with the environment are limited due to cost or feasibility. This presents a challenge to traditional RL algorithms since the max-return objective involves an expectation over on-policy samples. We introduce a new formulation of max-return optimization that allows the problem to be re-expressed by an expectation over an arbitrary behavior-agnostic and off-policy data distribution. We first derive this result by considering a regularized version of the dual max-return objective before extending our findings to unregularized objectives through the use of a Lagrangian formulation of the linear programming characterization of Q-values. We show that, if auxiliary dual variables of the objective are optimized, then the gradient of the off-policy objective is exactly the on-policy policy gradient, without any use of importance weighting. In addition to revealing the appealing theoretical properties of this approach, we also show that it delivers good practical performance.
In the past decade, contextual bandit and reinforcement learning algorithms have been successfully used in various interactive learning systems such as online advertising, recommender systems, and dynamic pricing. However, they have yet to be widely adopted in high-stakes application domains, such as healthcare. One reason may be that existing approaches assume that the underlying mechanisms are static in the sense that they do not change over different environments. In many real world systems, however, the mechanisms are subject to shifts across environments which may invalidate the static environment assumption. In this paper, we tackle the problem of environmental shifts under the framework of offline contextual bandits. We view the environmental shift problem through the lens of causality and propose multi-environment contextual bandits that allow for changes in the underlying mechanisms. We adopt the concept of invariance from the causality literature and introduce the notion of policy invariance. We argue that policy invariance is only relevant if unobserved confounders are present and show that, in that case, an optimal invariant policy is guaranteed to generalize across environments under suitable assumptions. Our results may be a first step towards solving the environmental shift problem. They also establish concrete connections among causality, invariance and contextual bandits.
Learning from Observations (LfO) is a practical reinforcement learning scenario from which many applications can benefit through the reuse of incomplete resources. Compared to conventional imitation learning (IL), LfO is more challenging because of the lack of expert action guidance. In both conventional IL and LfO, distribution matching is at the heart of their foundation. Traditional distribution matching approaches are sample-costly which depend on on-policy transitions for policy learning. Towards sample-efficiency, some off-policy solutions have been proposed, which, however, either lack comprehensive theoretical justifications or depend on the guidance of expert actions. In this work, we propose a sample-efficient LfO approach that enables off-policy optimization in a principled manner. To further accelerate the learning procedure, we regulate the policy update with an inverse action model, which assists distribution matching from the perspective of mode-covering. Extensive empirical results on challenging locomotion tasks indicate that our approach is comparable with state-of-the-art in terms of both sample-efficiency and asymptotic performance.
Reward shaping is an effective technique for incorporating domain knowledge into reinforcement learning (RL). Existing approaches such as potential-based reward shaping normally make full use of a given shaping reward function. However, since the transformation of human knowledge into numeric reward values is often imperfect due to reasons such as human cognitive bias, completely utilizing the shaping reward function may fail to improve the performance of RL algorithms. In this paper, we consider the problem of adaptively utilizing a given shaping reward function. We formulate the utilization of shaping rewards as a bi-level optimization problem, where the lower level is to optimize policy using the shaping rewards and the upper level is to optimize a parameterized shaping weight function for true reward maximization. We formally derive the gradient of the expected true reward with respect to the shaping weight function parameters and accordingly propose three learning algorithms based on different assumptions. Experiments in sparse-reward cartpole and MuJoCo environments show that our algorithms can fully exploit beneficial shaping rewards, and meanwhile ignore unbeneficial shaping rewards or even transform them into beneficial ones.
In this work, we aim to create a completely online algorithmic framework for prediction with expert advice that is translation-free and scale-free of the expert losses. Our goal is to create a generalized algorithm that is suitable for use in a wide variety of applications. For this purpose, we study the expected regret of our algorithm against a generic competition class in the sequential prediction by expert advice problem, where the expected regret measures the difference between the losses of our prediction algorithm and the losses of the best expert selection strategy in the competition. We design our algorithm using the universal prediction perspective to compete against a specified class of expert selection strategies, which is not necessarily a fixed expert selection. The class of expert selection strategies that we want to compete against is purely determined by the specific application at hand and is left generic, which makes our generalized algorithm suitable for use in many different problems. We show that no preliminary knowledge about the loss sequence is required by our algorithm and its performance bounds, which are second order, expressed in terms of sums of squared losses. Our regret bounds are stable under arbitrary scalings and translations of the losses.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا