Do you want to publish a course? Click here

Optimal Measurement of Field Properties with Quantum Sensor Networks

125   0   0.0 ( 0 )
 Added by Jacob Bringewatt
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a quantum sensor network of qubit sensors coupled to a field $f(vec{x};vec{theta})$ analytically parameterized by the vector of parameters $vectheta$. The qubit sensors are fixed at positions $vec{x}_1,dots,vec{x}_d$. While the functional form of $f(vec{x};vec{theta})$ is known, the parameters $vec{theta}$ are not. We derive saturable bounds on the precision of measuring an arbitrary analytic function $q(vec{theta})$ of these parameters and construct the optimal protocols that achieve these bounds. Our results are obtained from a combination of techniques from quantum information theory and duality theorems for linear programming. They can be applied to many problems, including optimal placement of quantum sensors, field interpolation, and the measurement of functionals of parametrized fields.



rate research

Read More

We generalize past work on quantum sensor networks to show that, for $d$ input parameters, entanglement can yield a factor $mathcal O(d)$ improvement in mean squared error when estimating an analytic function of these parameters. We show that the protocol is optimal for qubit sensors, and conjecture an optimal protocol for photons passing through interferometers. Our protocol is also applicable to continuous variable measurements, such as one quadrature of a field operator. We outline a few potential applications, including calibration of laser operations in trapped ion quantum computing.
Pulses to steer the time evolution of quantum systems can be designed with optimal control theory. In most cases it is the coherent processes that can be controlled and one optimizes the time evolution towards a target unitary process, sometimes also in the presence of non-controllable incoherent processes. Here we show how to extend the GRAPE algorithm in the case where the incoherent processes are controllable and the target time evolution is a non-unitary quantum channel. We perform a gradient search on a fidelity measure based on Choi matrices. We illustrate our algorithm by optimizing a phase qubit measurement pulse. We show how this technique can lead to large measurement contrast close to 99%. We also show, within the validity of our model, that this algorithm can produce short 1.4 ns pulses with 98.2% contrast.
The development of a future, global quantum communication network (or quantum internet) will enable high rate private communication and entanglement distribution over very long distances. However, the large-scale performance of ground-based quantum networks (which employ photons as information carriers through optical-fibres) is fundamentally limited by the fibre quality and link length. While these fundamental limits are well established for arbitrary network architectures, the question of how to best design these global architectures remains open. In this work, we take a step forward in addressing this problem by modelling global quantum networks with weakly-regular architectures. Such networks are capable of idealising end-to-end performance whilst remaining sufficiently realistic. In this way, we may investigate the effectiveness of large-scale networks with consistent connective properties, and unveil the global conditions under which end-to-end rates remain analytically computable. Furthermore, by comparing the performance of ideal, ground-based quantum networks with satellite quantum communication protocols, we can establish conditions for which satellites can be used to outperform fibre-based quantum infrastructure.
We develop an intuitive model of 2D microwave near-fields in the unusual regime of centimeter waves localized to tens of microns. Close to an intensity minimum, a simple effective description emerges with five parameters which characterize the strength and spatial orientation of the zero and first order terms of the near-field, as well as the field polarization. Such a field configuration is realized in a microfabricated planar structure with an integrated microwave conductor operating near 1 GHz. We use a single 9Be+ ion as a high-resolution quantum sensor to measure the field distribution through energy shifts in its hyperfine structure. We find agreement with simulations at the sub-micron and few-degree level. Our findings give a clear and general picture of the basic properties of oscillatory 2D near-fields with applications in quantum information processing, neutral atom trapping and manipulation, chip-scale atomic clocks, and integrated microwave circuits.
We consider the problem of estimating multiple analytic functions of a set of local parameters via qubit sensors in a quantum sensor network. To address this problem, we highlight a generalization of the sensor symmetric performance bounds of Rubio et. al. [J. Phys. A: Math. Theor. 53 344001 (2020)] and develop a new optimized sequential protocol for measuring such functions. We compare the performance of both approaches to one another and to local protocols that do not utilize quantum entanglement, emphasizing the geometric significance of the coefficient vectors of the measured functions in determining the best choice of measurement protocol. We show that, in many cases, especially for a large number of sensors, the optimized sequential protocol results in more accurate measurements than the other strategies. In addition, in contrast to the the sensor symmetric approach, the sequential protocol is known to always be explicitly implementable. The sequential protocol is very general and has a wide range of metrological applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا