Do you want to publish a course? Click here

Scheduling Real-time Deep Learning Services as Imprecise Computations

87   0   0.0 ( 0 )
 Added by Shuochao Yao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The paper presents an efficient real-time scheduling algorithm for intelligent real-time edge services, defined as those that perform machine intelligence tasks, such as voice recognition, LIDAR processing, or machine vision, on behalf of local embedded devices that are themselves unable to support extensive computations. The work contributes to a recent direction in real-time computing that develops scheduling algorithms for machine intelligence tasks with anytime prediction. We show that deep neural network workflows can be cast as imprecise computations, each with a mandatory part and (several) optional parts whose execution utility depends on input data. The goal of the real-time scheduler is to maximize the average accuracy of deep neural network outputs while meeting task deadlines, thanks to opportunistic shedding of the least necessary optional parts. The work is motivated by the proliferation of increasingly ubiquitous but resource-constrained embedded devices (for applications ranging from autonomous cars to the Internet of Things) and the desire to develop services that endow them with intelligence. Experiments on recent GPU hardware and a state of the art deep neural network for machine vision illustrate that our scheme can increase the overall accuracy by 10%-20% while incurring (nearly) no deadline misses.

rate research

Read More

Recent work has discovered that deep reinforcement learning (DRL) policies are vulnerable to adversarial examples. These attacks mislead the policy of DRL agents by perturbing the state of the environment observed by agents. They are feasible in principle but too slow to fool DRL policies in real time. We propose a new attack to fool DRL policies that is both effective and efficient enough to be mounted in real time. We utilize the Universal Adversarial Perturbation (UAP) method to compute effective perturbations independent of the individual inputs to which they are applied. Via an extensive evaluation using Atari 2600 games, we show that our technique is effective, as it fully degrades the performance of both deterministic and stochastic policies (up to 100%, even when the $l_infty$ bound on the perturbation is as small as 0.005). We also show that our attack is efficient, incurring an online computational cost of 0.027ms on average. It is faster compared to the response time (0.6ms on average) of agents with different DRL policies, and considerably faster than prior attacks (2.7ms on average). Furthermore, we demonstrate that known defenses are ineffective against universal perturbations. We propose an effective detection technique which can form the basis for robust defenses against attacks based on universal perturbations.
Priority dispatching rule (PDR) is widely used for solving real-world Job-shop scheduling problem (JSSP). However, the design of effective PDRs is a tedious task, requiring a myriad of specialized knowledge and often delivering limited performance. In this paper, we propose to automatically learn PDRs via an end-to-end deep reinforcement learning agent. We exploit the disjunctive graph representation of JSSP, and propose a Graph Neural Network based scheme to embed the states encountered during solving. The resulting policy network is size-agnostic, effectively enabling generalization on large-scale instances. Experiments show that the agent can learn high-quality PDRs from scratch with elementary raw features, and demonstrates strong performance against the best existing PDRs. The learned policies also perform well on much larger instances that are unseen in training.
We explore the use of deep reinforcement learning to provide strategies for long term scheduling of hydropower production. We consider a use-case where the aim is to optimise the yearly revenue given week-by-week inflows to the reservoir and electricity prices. The challenge is to decide between immediate water release at the spot price of electricity and storing the water for later power production at an unknown price, given constraints on the system. We successfully train a soft actor-critic algorithm on a simplified scenario with historical data from the Nordic power market. The presented model is not ready to substitute traditional optimisation tools but demonstrates the complementary potential of reinforcement learning in the data-rich field of hydropower scheduling.
We consider a set of APs with unknown data rates that cooperatively serve a mobile client. The data rate of each link is i.i.d. sampled from a distribution that is unknown a priori. In contrast to traditional link scheduling problems under uncertainty, we assume that in each time step, the device can probe a subset of links before deciding which one to use. We model this problem as a contextual bandit problem with probing (CBwP) and present an efficient algorithm. We further establish the regret of our algorithm for links with Bernoulli data rates. Our CBwP model is a novel extension of the classic contextual bandit model and can potentially be applied to a large class of sequential decision-making problems that involve joint probing and play under uncertainty.
In E-commerce advertising, where product recommendations and product ads are presented to users simultaneously, the traditional setting is to display ads at fixed positions. However, under such a setting, the advertising system loses the flexibility to control the number and positions of ads, resulting in sub-optimal platform revenue and user experience. Consequently, major e-commerce platforms (e.g., Taobao.com) have begun to consider more flexible ways to display ads. In this paper, we investigate the problem of advertising with adaptive exposure: can we dynamically determine the number and positions of ads for each user visit under certain business constraints so that the platform revenue can be increased? More specifically, we consider two types of constraints: request-level constraint ensures user experience for each user visit, and platform-level constraint controls the overall platform monetization rate. We model this problem as a Constrained Markov Decision Process with per-state constraint (psCMDP) and propose a constrained two-level reinforcement learning approach to decompose the original problem into two relatively independent sub-problems. To accelerate policy learning, we also devise a constrained hindsight experience replay mechanism. Experimental evaluations on industry-scale real-world datasets demonstrate the merits of our approach in both obtaining higher revenue under the constraints and the effectiveness of the constrained hindsight experience replay mechanism.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا