Do you want to publish a course? Click here

Establishing the first hidden-charm pentaquark with strangeness

116   0   0.0 ( 0 )
 Added by Hua-Xing Chen
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the $P_{cs}(4459)^0$ recently observed by LHCb using the method of QCD sum rules. Our results support its interpretation as the $bar D^* Xi_c$ hadronic molecular state of either $J^P=1/2^-$ or $3/2^-$. Within the hadronic molecular picture, the three LHCb experiments observing $P_c$ and $P_{cs}$ states cite{lhcb,Aaij:2015tga,Aaij:2019vzc} can be well understood as a whole. This strongly supports the existence of hadronic molecules, whose studies can significantly improve our understanding on the construction of the subatomic world. To verify this picture, we propose to further investigate the $P_{cs}(4459)^0$ to examine whether it can be separated into two states, and to search for the $bar D Xi_c$ molecular state of $J^P=1/2^-$.



rate research

Read More

Motivated by the recent discovery of the first hidden charm pentaquark state with strangeness $P_{cs}(4459)$ by the LHCb Collaboration, we study the likely existence of a three-body $Sigma_{c}bar{D}bar{K}$ bound state, which shares the same minimal quark content as $P_{cs}(4459)$. The $Sigma_{c}bar{D}$ and $DK$ interactions are determined by reproducing $P_c(4312)$ and $D_{s0}^*(2317)$ as $Sigma_cbar{D}$ and $bar{D}bar{K}$ molecules, respectively, while the $Sigma_cbar{K}$ interaction is constrained by chiral effective theory. We indeed find a three-body bound state by solving the Schrodinger equation using the Gaussian Expansion Method, which can be viewed as an excited hidden charm pentaquark state with strangeness, $P_{cs}^*(4739)$, with $I(J^P)=1(1/2^+)$ and a binding energy of $77.8^{+25}_{-10.3}$ MeV. We further study its strong decays via triangle diagrams and show that its partial decay widths into $DXi_c$ and $D_s^*Sigma_c$ are of a few tens MeV, with the former being dominant.
205 - L. G. Landsberg 1999
Evidences for new baryon states with mass >1.8 GeV were obtained in the experiments of the SPHINX Collaboration in studying hyperon-kaon mass spectra in several proton diffractive reactions. The main result of these experiments is the observation of X(2000)->SIGMA K state with unusual dynamical features (narrow width, anomalously large branching ratios for the decay channels with strange particle emission). The possibility of the interpretation of this state as cryptoexotic pentaquark baryon with hidden strangeness is discussed. The additional data which are supported the real existence of X(2000) baryon are also presented.
69 - Zhi Yang , Xu Cao , Yu-Tie Liang 2020
We study the electroproduction of the LHCb pentaquark states with the assumption that they are resonant states. The main concern here is to investigate the final state distribution in the phase space in order to extract the feeble pentaquark signal from the large non-resonant background. Our results show that the ratio of the signal to background would increase significantly with proper kinematic cut, which would be very helpful for future experimental analysis.
The mass spectrum of hidden charm pentaquark states composed of two diquarks and an antiquark are calculated by use of an effective Hamiltonian which includes explicitly the spin, color, and flavor dependent interactions. The results show that the $P_c(4312)^+$ and $P_c(4440)^+$ states could be explained as hidden charm pentaquark states with isospin and spin-parity $IJ^P=1/2left(3/2^-right)$, the $P_c(4457)^+$ state could be explained as a hidden charm pentaquark state with $IJ^P=1/2left(5/2^-right)$, and the $P_{cs}(4459)^+$ state could be explained as a hidden charm pentaquark state with $IJ^P=0left(1/2^-right)$ or $0left(3/2^-right)$. Predications for the masses of other possible pentaquark states are also given, and the possible decay channels of these hidden charm pentaquark states are discussed.
In the hadrocharmonium picture a $bar cc$ state and a light hadron form a bound state. The effective interaction is described in terms of the chromoelectric polarizability of the $bar cc$ state and energy-momentum-tensor densities of the light hadron. This picture is justified in the heavy quark limit, and may successfully account for a hidden-charm pentaquark state recently observed by LHCb. In this work we extend the formalism to the description of hidden-charm tetraquarks, and address the question of whether the resonant states observed by LHCb in the $J/psi$-$phi$ spectrum can be described as hadrocharmonia. This is a non-trivial question because nothing is known about the $phi$ meson energy-momentum-tensor densities. With rather general assumptions about energy-momentum-tensor densities in the $phi$-meson we show that a $psi(2S)$-$phi$ bound state can exist, and obtain a characteristic relation between its mass and width. We show that the tetraquark $X(4274)$ observed by LHCb in $J/psi$-$phi$ spectrum is a good candidate for a hadrocharmonium. We make predictions which will allow testing this picture. Our method can be generalized to identify other potential hadrocharmonia.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا