Do you want to publish a course? Click here

Minimally modified gravity with an auxiliary constraint: a Hamiltonian construction

111   0   0.0 ( 0 )
 Added by Zhi-Bang Yao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Working directly with a general Hamiltonian for the spacetime metric with the $3+1$ decomposition and keeping only the spatial covariance, we investigate the possibility of reducing the number of degrees of freedom by introducing an auxiliary constraint. The auxiliary constraint is considered as part of the definition of the theory. Through a general Hamiltonian analysis, we find the conditions for the Hamiltonian as well as for the auxiliary constraint, under which the theory propagates two tensorial degrees of freedom only. The class of theories satisfying these conditions can be viewed as a new construction for the type-II minimally modified gravity theories, which propagate the same degrees of freedom of but are not equivalent to general relativity in the vacuum. We also illustrate our formalism by a concrete example, and derive the dispersion relation for the gravitational waves, which can be constrained by observations.



rate research

Read More

In the context of the recently proposed type-II minimally modified gravity theory, i.e. a metric theory of gravity with two local physical degrees of freedom that does not possess an Einstein frame, we study spherically symmetric vacuum solutions to explore the strong gravity regime. Despite the absence of extra degrees of freedom in the gravity sector, the vacuum solutions are locally different from the Schwarzschild or Schwarzschild-(A)dS metric in general and thus the Birkhoff theorem does not hold. The general solutions are parameterized by several free functions of time and admit regular trapping and event horizons. Depending on the choice of the free functions of time, the null convergence condition may be violated in vacuum. Even in the static limit, while the solutions in this limit reduce to the Schwarzschild or Schwarzschild-(A)dS solutions, the effective cosmological constant deduced from the solutions is in general different from the cosmological value that is determined by the action. Nonetheless, once a set of suitable asymptotic conditions is imposed so that the solutions represent compact objects in the corresponding cosmological setup, the standard Schwarzschild or Schwarzschild-(A)dS metric is recovered and the effective cosmological constant agrees with the value inferred from the action.
The current paper is dedicated to developing a (3+1) decomposition for the minimal gravitational Standard-Model Extension. Our setting is explicit diffeomorphism violation and we focus on the background fields known in the literature as $u$ and $s^{mu u}$. The Hamiltonian formalism is developed for these contributions, which amounts to deriving modified Hamiltonian and momentum constraints. We then study the connection between these modified constraints and the modified Einstein equations. Implications are drawn on the form of the background fields to guarantee the internal consistency of the corresponding modified-gravity theories. In the course of our analysis, we obtain a set of consistency requirements for $u$ and certain sectors of $s^{mu u}$. We argue that the constraint structure remains untouched when these conditions are satisfied. Our results shed light on explicit violations of diffeomorphism invariance and local Lorentz invariance in gravity. They may turn out to be valuable for developing a better understanding of effective modified-gravity theories.
We propose a modified gravity theory that propagates only two local gravitational degrees of freedom and that does not have an Einstein frame. According to the classification in JCAP 01 (2019) 017 [arXiv:1810.01047 [gr-qc]], this is a type-II minimally modified gravity theory. The theory is characterized by the gravitational constant $G_{rm N}$ and a function $V(phi)$ of a non-dynamical auxiliary field $phi$ that plays the role of dark energy. Once one fixes a homogeneous and isotropic cosmological background, the form of $V(phi)$ is determined and the theory no longer possesses a free parameter or a free function, besides $G_{rm N}$. For $V(phi) = 0$ the theory reduces to general relativity (GR) with $G_N$ being the Newtons constant and $V=const.$ being the cosmological constant. For $V(phi) e 0$, it is shown that gravity behaves differently from GR but that GR with $G_{rm N}$ being the Newtons constant is recovered for weak gravity at distance and time scales sufficiently shorter than the scale associated with $V(phi)$. Therefore this theory provides the simplest framework of cosmology in which deviations from GR can be tested by observational data.
77 - Valerio Faraoni 2015
A new generalization of the Hawking-Hayward quasilocal energy to scalar-tensor gravity is proposed without assuming symmetries, asymptotic flatness, or special spacetime metrics. The procedure followed is simple but powerful and consists of writing the scalar-tensor field equations as effective Einstein equations and then applying the standard definition of quasilocal mass.
In this paper we analyze the gravitational field of a global monopole in the context of $f(R)$ gravity. More precisely, we show that the field equations obtained are expressed in terms of $F(R)=frac{df(R)}{dR}$. Since we are dealing with a spherically symmetric system, we assume that $F(R)$ is a function of the radial coordinate only. Moreover, adopting the weak field approximation, we can provide all components of the metric tensor. A comparison with the corresponding results obtained in General Relativity and in the Brans-Dicke theory is also made.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا