Soliton dynamics in microresonators with XPM induced negative thermo-optic effect


Abstract in English

Optical frequency comb generation in microresonators has attracted significant attention over the past decade, as it offers the promising potential for chip-scale optical frequency synthesis, optical clocks and precise optical spectroscopy. However, accessing temporal dissipative Kerr soliton (DKSs) is known to be severely hampered by thermal effects. Furthermore, due to the degeneracy of soliton existence range with respect to soliton number, deterministically accessing single soliton state is another challenge. Here, we demonstrate stable and deterministic single soliton generation in AlN-on-sapphire platform via auxiliary laser pumping scheme without the requirement of fast control of the pump power and detuning. Moreover, we reveal the underlying physics of soliton switching in a dual-pumped microcomb, which is fully described by the Lugiato - Lefever equation. The switching process is attributed to cross-phase modulation (XPM) induced degeneracy lifting of the soliton existence range, corresponding to an effective negative thermo-optic effect.

Download