Do you want to publish a course? Click here

Intertwined Topological and Magnetic Orders in Atomically Thin Chern Insulator MnBi2Te4

240   0   0.0 ( 0 )
 Added by Yong-Tao Cui
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interplay between band topology and magnetic order plays a key role in quantum states of matter. MnBi2Te4, a van der Waals magnet, has recently emerged as an exciting platform for exploring Chern insulator physics. Its layered antiferromagnetic order was predicted to enable even-odd layer-number dependent topological states, supported by promising edge transport measurements. Furthermore, it becomes a Chern insulator when all spins are aligned by an applied magnetic field. However, the evolution of the bulk electronic structure as the magnetic state is continuously tuned and its dependence on layer number remains unexplored. Here, employing multimodal probes, we establish one-to-one correspondence between bulk electronic structure, magnetic state, topological order, and layer thickness in atomically thin MnBi2Te4 devices. As the magnetic state is tuned through the canted magnetic phase, we observe a band crossing, i.e., the closing and reopening of the bulk bandgap, corresponding to the concurrent topological phase transition. Surprisingly, we find that the even- and odd-layer number devices exhibit a similar topological phase transition coupled to magnetic states, distinct from recent theoretical and experimental reports. Our findings shed new light on the interplay between band topology and magnetic order in this newly discovered topological magnet and validate the band crossing with concurrent measurements of topological invariant in a continuously tuned topological phase transition.



rate research

Read More

301 - Yuchen Ji , Zheng Liu , Peng Zhang 2021
The quantized version of anomalous Hall effect realized in magnetic topological insulators (MTIs) has great potential for the development of topological quantum physics and low-power electronic/spintronic applications. To enable dissipationless chiral edge conduction at zero magnetic field, effective exchange field arisen from the aligned magnetic dopants needs to be large enough to yield specific spin sub-band configurations. Here we report the thickness-tailored quantum anomalous Hall (QAH) effect in Cr-doped (Bi,Sb)2Te3 thin films by tuning the system across the two-dimensional (2D) limit. In addition to the Chern number-related metal-to-insulator QAH phase transition, we also demonstrate that the induced hybridization gap plays an indispensable role in determining the ground magnetic state of the MTIs, namely the spontaneous magnetization owning to considerable Van Vleck spin susceptibility guarantees the zero-field QAH state with unitary scaling law in thick samples, while the quantization of the Hall conductance can only be achieved with the assistance of external magnetic fields in ultra-thin films. The modulation of topology and magnetism through structural engineering may provide a useful guidance for the pursuit of QAH-based new phase diagrams and functionalities.
127 - S.-K. Bac , K. Koller , F. Lux 2021
Three-dimensional (3D) compensated MnBi2Te4 is antiferromagnetic, but undergoes a spin-flop transition at intermediate fields, resulting in a canted phase before saturation. In this work, we experimentally show that the anomalous Hall effect (AHE) in MnBi2Te4 originates from a topological response that is sensitive to the perpendicular magnetic moment and to its canting angle. Synthesis by molecular beam epitaxy allows us to obtain a large-area quasi-3D 24-layer MnBi2Te4 with near-perfect compensation that hosts the phase diagram observed in bulk which we utilize to probe the AHE. This AHE is seen to exhibit an antiferromagnetic response at low magnetic fields, and a clear evolution at intermediate fields through surface and bulk spin-flop transitions into saturation. Throughout this evolution, the AHE is super-linear versus magnetization rather than the expected linear relationship. We reveal that this discrepancy is related to the canting angle, consistent with the symmetry of the crystal. Our findings suggests that novel topological responses may be found in non-collinear ferromagnetic, and antiferromagnetic phases.
Dynamic manipulation of magnetism in topological materials is demonstrated here via a Floquet engineering approach using circularly polarized light. Increasing the strength of the laser field, besides the expected topological phase transition, the magnetically doped topological insulator thin film also undergoes a magnetic phase transition from ferromagnetism to paramagnetism, whose critical behavior strongly depends on the quantum quenching. In sharp contrast to the equilibrium case, the non-equilibrium Curie temperatures vary for different time scale and experimental setup, not all relying on change of topology. Our discoveries deepen the understanding of the relationship between topology and magnetism in the non-equilibrium regime and extend optoelectronic device applications to topological materials.
Recently, MnBi2Te4 has been discovered as the first intrinsic antiferromagnetic topological insulator (AFM TI), and will become a promising material to discover exotic topological quantum phenomena. In this work, we have realized the successful synthesis of high-quality MnBi2Te4 single crystals by solid-state reactions. The as-grown MnBi2Te4 single crystal exhibits a van der Waals layered structure, which is composed of septuple Te-Bi-Te-Mn-Te-Bi-Te sequences as determined by powder X-ray diffraction (PXRD) and high-resolution high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The magnetic order below 25 K as a consequence of A-type antiferromagnetic interaction between Mn layers in the MnBi2Te4 crystal suggests the unique interplay between antiferromagnetism and topological quantum states. The transport measurements of MnBi2Te4 single crystals further confirm its magnetic transition. Moreover, the unstable surface of MnBi2Te4, which is found to be easily oxidized in air, deserves attention for onging research on few-layer samples. This study on the first AFM TI of MnBi2Te4 will guide the future research on other potential candidates in the MBixTey family (M = Ni, V, Ti, etc.).
Based on first-principles calculations and symmetry analysis, we predict atomically thin ($1-N$ layers) 2H group-VIB TMDs $MX_2$ ($M$ = Mo, W; $X$ = S, Se, Te) are large-gap higher-order topological crystalline insulators protected by $C_3$ rotation symmetry. We explicitly demonstrate the nontrivial topological indices and existence of the hallmark corner states with quantized fractional charge for these familiar TMDs with large bulk optical band gaps ($1.64-1.95$ eV for the monolayers), which would facilitate the experimental detection by STM. We find that the well-defined corner states exist in the triangular finite-size flakes with armchair edges of the atomically thin ($1-N$ layers) 2H group-VIB TMDs, and the corresponding quantized fractional charge is the number of layers $N$ divided by 3 modulo integers, which will simply double including spin degree of freedom.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا