Do you want to publish a course? Click here

Improved Hierarchical ADMM for Nonconvex Cooperative Distributed Model Predictive Control

103   0   0.0 ( 0 )
 Added by Jun Ma
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Distributed optimization is often widely attempted and innovated as an attractive and preferred methodology to solve large-scale problems effectively in a localized and coordinated manner. Thus, it is noteworthy that the methodology of distributed model predictive control (DMPC) has become a promising approach to achieve effective outcomes, e.g., in decision-making tasks for multi-agent systems. However, the typical deployment of such distributed MPC frameworks would lead to the involvement of nonlinear processes with a large number of nonconvex constraints. To address this important problem, the development and innovation of a hierarchical three-block alternating direction method of multipliers (ADMM) approach is presented in this work to solve this nonconvex cooperative DMPC problem in multi-agent systems. Here firstly, an additional slack variable is introduced to transform the original large-scale nonconvex optimization problem. Then, a hierarchical ADMM approach, which contains outer loop iteration by the augmented Lagrangian method (ALM) and inner loop iteration by three-block semi-proximal ADMM, is utilized to solve the resulting transformed nonconvex optimization problem. Additionally, it is analytically shown and established that the requisite desired stationary point exists for convergence in the algorithm. Finally, an approximate optimization stage with a barrier method is then applied to further significantly improve the computational efficiency, yielding the final improved hierarchical ADMM. The effectiveness of the proposed method in terms of attained performance and computational efficiency is demonstrated on a cooperative DMPC problem of decision-making process for multiple unmanned aerial vehicles (UAVs).

rate research

Read More

101 - Marie Maros , Joakim Jalden 2016
This paper shows the capability the alternating direction method of multipliers (ADMM) has to track, in a distributed manner, the optimal down-link beam-forming solution in a multiple input multiple output (MISO) multi-cell network given a dynamic channel. Each time the channel changes, ADMM is allowed to perform one algorithm iteration. In order to implement the proposed scheme, the base stations are not required to exchange channel state information (CSI), but will require to exchange interference values once. We show ADMMs tracking ability in terms of the algorithms Lyapunov function given that the primal and dual solutions to the convex optimization problem at hand can be understood as a continuous mapping from the problems parameters. We show that this holds true even considering that the problem looses strong convexity when it is made distributed. We then show that these requirements hold for the down-link, and consequently up-link, beam-forming case. Numerical examples corroborating the theoretical findings are also provided.
114 - Christoph Mark , Steven Liu 2021
In this paper, we propose a chance constrained stochastic model predictive control scheme for reference tracking of distributed linear time-invariant systems with additive stochastic uncertainty. The chance constraints are reformulated analytically based on mean-variance information, where we design suitable Probabilistic Reachable Sets for constraint tightening. Furthermore, the chance constraints are proven to be satisfied in closed-loop operation. The design of an invariant set for tracking complements the controller and ensures convergence to arbitrary admissible reference points, while a conditional initialization scheme provides the fundamental property of recursive feasibility. The paper closes with a numerical example, highlighting the convergence to changing output references and empirical constraint satisfaction.
The alternating direction method of multipliers (ADMM) algorithm is a powerful and flexible tool for complex optimization problems of the form $min{f(x)+g(y) : Ax+By=c}$. ADMM exhibits robust empirical performance across a range of challenging settings including nonsmoothness and nonconvexity of the objective functions $f$ and $g$, and provides a simple and natural approach to the inverse problem of image reconstruction for computed tomography (CT) imaging. From the theoretical point of view, existing results for convergence in the nonconvex setting generally assume smoothness in at least one of the component functions in the objective. In this work, our new theoretical results provide convergence guarantees under a restricted strong convexity assumption without requiring smoothness or differentiability, while still allowing differentiable terms to be treated approximately if needed. We validate these theoretical results empirically, with a simulated example where both $f$ and $g$ are nondifferentiable -- and thus outside the scope of existing theory -- as well as a simulated CT image reconstruction problem.
We propose a general hybrid model predictive control algorithm, consensus complementarity control (C3), for systems that make and break contact with their environment. Many state-of-the-art controllers for tasks which require initiating contact with the environment, such as locomotion and manipulation, require a priori mode schedules or are so computationally complex that they cannot run at real-time rates. We present a method, based on the alternating direction method of multipliers (ADMM), capable of highspeed reasoning over potential contact events. Via a consensus formulation, our approach enables parallelization of the contact scheduling problem. We validate our results on three numerical examples, including two frictional contact problems, and physical experimentation on an underactuated multi-contact system.
In this paper the optimal control of alignment models composed by a large number of agents is investigated in presence of a selective action of a controller, acting in order to enhance consensus. Two types of selective controls have been presented: an homogeneous control filtered by a selective function and a distributed control active only on a selective set. As a first step toward a reduction of computational cost, we introduce a model predictive control (MPC) approximation by deriving a numerical scheme with a feedback selective constrained dynamics. Next, in order to cope with the numerical solution of a large number of interacting agents, we derive the mean-field limit of the feedback selective constrained dynamics, which eventually will be solved numerically by means of a stochastic algorithm, able to simulate efficiently the selective constrained dynamics. Finally, several numerical simulations are reported to show the efficiency of the proposed techniques.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا