Do you want to publish a course? Click here

Impact of Low-Resolution ADC on DOA Estimation Performance for Massive MIMO Receive Array

117   0   0.0 ( 0 )
 Added by Baihua Shi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we present a new scenario of direction of arrival (DOA) estimation using massive multiple-input multiple-output (MIMO) receive array with low-resolution analog-to-digital convertors (ADCs), which can strike a good balance between performance and circuit cost. Based on the linear additive quantization noise model (AQNM), the effect of low-resolution ADCs on the methods, such as Root-MUSIC method, is analyzed. Also, the closed-form expression of Cramer-Rao lower bound (CRLB) is derived to evaluate the performance loss caused by the low-resolution ADCs. The simulation results show that the Root-MUSIC methods can achieve the corresponding CRLB. Furthermore, 2-3 bits are acceptable for most applications if the 1dB performance loss.



rate research

Read More

122 - Baihua Shi , Qijuan Jie , Feng Shu 2021
As massive multiple-input multiple-output (MIMO) becomes popular, direction of arrival (DOA) measurement has been made a real renaissance due to the high-resolution achieved. Thus, there is no doubt about DOA estimation using massive MIMO. The purpose of this paper is to describe its basic principles and key techniques, to present the performance analysis, and to appreciate its engineering applications. It is anticipated that there are still many challenges in DOA estimation using massive receive MIMO, such as high circuit cost, high energy consumption and high complexity of the algorithm implementation. New researches and breakthroughs are illustrated to deal with those problems. Then, a new architecture, hybrid analog and digital (HAD) massive receive MIMO with low-resolution ADCs, is presented to strike a good balance among circuit cost, complexity and performance. Then, a novel three-dimensional (3D) angle of arrival (AOA) localization method based on geometrical center is proposed to compute the position of a passive emitter using single base station equipped with an ultra-massive MIMO system. And, it can achieve the Cramer-Rao low bound (CRLB). Here, the performance loss is also analyzed to quantify the minimum number of bits. DOA estimation will play a key role in lots of applications, such as directional modulation, beamforming tracking and alignment for 5G/6G.
A large-scale fully-digital receive antenna array can provide very high-resolution direction of arrival (DOA) estimation, but resulting in a significantly high RF-chain circuit cost. Thus, a hybrid analog and digital (HAD) structure is preferred. Two phase alignment (PA) methods, HAD PA (HADPA) and hybrid digital and analog PA (HDAPA), are proposed to estimate DOA based on the parametric method. Compared to analog phase alignment (APA), they can significantly reduce the complexity in the PA phases. Subsequently, a fast root multiple signal classification HDAPA (Root-MUSIC-HDAPA) method is proposed specially for this hybrid structure to implement an approximately analytical solution. Due to the HAD structure, there exists the effect of direction-finding ambiguity. A smart strategy of maximizing the average receive power is adopted to delete those spurious solutions and preserve the true optimal solution by linear searching over a set of limited finite candidate directions. This results in a significant reduction in computational complexity. Eventually, the Cramer-Rao lower bound (CRLB) of finding emitter direction using the HAD structure is derived. Simulation results show that our proposed methods, Root-MUSIC-HDAPA and HDAPA, can achieve the hybrid CRLB with their complexities being significantly lower than those of pure linear searching-based methods, such as APA.
Due to the power consumption and high circuit cost in antenna arrays, the practical application of massive multipleinput multiple-output (MIMO) in the sixth generation (6G) and future wireless networks is still challenging. Employing lowresolution analog-to-digital converters (ADCs) and hybrid analog and digital (HAD) structure is two low-cost choice with acceptable performance loss. In this paper, the combination of the mixedADC architecture and HAD structure employed at receiver is proposed for direction of arrival (DOA) estimation, which will be applied to the beamforming tracking and alignment in 6G. By adopting the additive quantization noise model, the exact closedform expression of the Cramer-Rao lower bound (CRLB) for the HAD architecture with mixed-ADCs is derived. Moreover, the closed-form expression of the performance loss factor is derived as a benchmark. In addition, to take power consumption into account, energy efficiency is also investigated in our paper. The numerical results reveal that the HAD structure with mixedADCs can significantly reduce the power consumption and hardware cost. Furthermore, that architecture is able to achieve a better trade-off between the performance loss and the power consumption. Finally, adopting 2-4 bits of resolution may be a good choice in practical massive MIMO systems.
High hardware cost and high power consumption of massive multiple-input and multiple output (MIMO) are still two challenges for the future wireless communications including beyond 5G. Adopting the low-resolution analog-to-digital converter (ADC) is viewed as a promising solution. Additionally, the direction of arrival (DOA) estimation is an indispensable technology for beam alignment and tracking in massive MIMO systems. Thus, in this paper, the performance of DOA estimation for massive MIMO receive array with mixed-ADC structure is first investigated, where one part of radio frequency (RF) chains are connected with high-resolution ADCs and the remaining ones are connected with low-resolution ADCs. Moreover, the Cramer-Rao lower bound (CRLB) for this architecture is derived based on the additive quantization noise model approximation for the effect of low-resolution ADCs. Then, the root-MUSIC method is designed for such a receive structure. Eventually, a performance loss factor and the associated energy efficiency factor is defined for analysis in detail. Simulation results find that a mixed-ADC architecture can strike a good balance among RMSE performance, circuit cost and energy efficiency. More importantly, just 1-4 bits of low-resolution ADCs can achieve a satisfactory performance for DOA measurement.
In order to reduce hardware complexity and power consumption, massive multiple-input multiple-output (MIMO) systems employ low-resolution analog-to-digital converters (ADCs) to acquire quantized measurements $boldsymbol y$. This poses new challenges to the channel estimation problem, and the sparse prior on the channel coefficient vector $boldsymbol x$ in the angle domain is often used to compensate for the information lost during quantization. By interpreting the sparse prior from a probabilistic perspective, we can assume $boldsymbol x$ follows certain sparse prior distribution and recover it using approximate message passing (AMP). However, the distribution parameters are unknown in practice and need to be estimated. Due to the increased computational complexity in the quantization noise model, previous works either use an approximated noise model or manually tune the noise distribution parameters. In this paper, we treat both signals and parameters as random variables and recover them jointly within the AMP framework. The proposed approach leads to a much simpler parameter estimation method, allowing us to work with the quantization noise model directly. Experimental results show that the proposed approach achieves state-of-the-art performance under various noise levels and does not require parameter tuning, making it a practical and maintenance-free approach for channel estimation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا