Do you want to publish a course? Click here

DebiNet: Debiasing Linear Models with Nonlinear Overparameterized Neural Networks

112   0   0.0 ( 0 )
 Added by Shiyun Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent years have witnessed strong empirical performance of over-parameterized neural networks on various tasks and many advances in the theory, e.g. the universal approximation and provable convergence to global minimum. In this paper, we incorporate over-parameterized neural networks into semi-parametric models to bridge the gap between inference and prediction, especially in the high dimensional linear problem. By doing so, we can exploit a wide class of networks to approximate the nuisance functions and to estimate the parameters of interest consistently. Therefore, we may offer the best of two worlds: the universal approximation ability from neural networks and the interpretability from classic ordinary linear model, leading to both valid inference and accurate prediction. We show the theoretical foundations that make this possible and demonstrate with numerical experiments. Furthermore, we propose a framework, DebiNet, in which we plug-in arbitrary feature selection methods to our semi-parametric neural network. DebiNet can debias the regularized estimators (e.g. Lasso) and perform well, in terms of the post-selection inference and the generalization error.



rate research

Read More

Natural gradient descent has proven effective at mitigating the effects of pathological curvature in neural network optimization, but little is known theoretically about its convergence properties, especially for emph{nonlinear} networks. In this work, we analyze for the first time the speed of convergence of natural gradient descent on nonlinear neural networks with squared-error loss. We identify two conditions which guarantee efficient convergence from random initializations: (1) the Jacobian matrix (of networks output for all training cases with respect to the parameters) has full row rank, and (2) the Jacobian matrix is stable for small perturbations around the initialization. For two-layer ReLU neural networks, we prove that these two conditions do in fact hold throughout the training, under the assumptions of nondegenerate inputs and overparameterization. We further extend our analysis to more general loss functions. Lastly, we show that K-FAC, an approximate natural gradient descent method, also converges to global minima under the same assumptions, and we give a bound on the rate of this convergence.
112 - Julius Ruseckas 2019
In this work we systematically analyze general properties of differential equations used as machine learning models. We demonstrate that the gradient of the loss function with respect to to the hidden state can be considered as a generalized momentum conjugate to the hidden state, allowing application of the tools of classical mechanics. In addition, we show that not only residual networks, but also feedforward neural networks with small nonlinearities and the weights matrices deviating only slightly from identity matrices can be related to the differential equations. We propose a differential equation describing such networks and investigate its properties.
Machine Learning algorithms are increasingly being used in recent years due to their flexibility in model fitting and increased predictive performance. However, the complexity of the models makes them hard for the data analyst to interpret the results and explain them without additional tools. This has led to much research in developing various approaches to understand the model behavior. In this paper, we present the Explainable Neural Network (xNN), a structured neural network designed especially to learn interpretable features. Unlike fully connected neural networks, the features engineered by the xNN can be extracted from the network in a relatively straightforward manner and the results displayed. With appropriate regularization, the xNN provides a parsimonious explanation of the relationship between the features and the output. We illustrate this interpretable feature--engineering property on simulated examples.
Discovering causal structures from data is a challenging inference problem of fundamental importance in all areas of science. The appealing scaling properties of neural networks have recently led to a surge of interest in differentiable neural network-based methods for learning causal structures from data. So far differentiable causal discovery has focused on static datasets of observational or interventional origin. In this work, we introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process. Our method significantly reduces the required number of interactions compared with random intervention targeting and is applicable for both discrete and continuous optimization formulations of learning the underlying directed acyclic graph (DAG) from data. We examine the proposed method across a wide range of settings and demonstrate superior performance on multiple benchmarks from simulated to real-world data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا