No Arabic abstract
Utilizing the first-principles density functional theory calculations together with group theory analyses, we systematically investigate the spin order-dependent magneto-optical effect (MOE), anomalous Hall effect (AHE), and anomalous Nernst effect (ANE) in a recently discovered two-dimensional room-temperature ferromagnet $1T$-CrTe$_2$. We find that the spin prefers an in-plane direction by the magnetocrystalline anisotropy energy calculations. The MOE, AHE, and ANE display a period of $2pi/3$ when the spin rotates within the atomic plane, and they are forbidden if there exists a mirror plane perpendicular to the spin direction. By reorienting the spin from in-plane to out-of-plane direction, the MOE, AHE, and ANE are enhanced by around one order of magnitude. Moreover, we establish the layer-dependent magnetic properties for multilayer $1T$-CrTe$_2$ and predict antiferromagnetism and ferromagnetism for bilayer and trilayer $1T$-CrTe$_2$, respectively. The MOE, AHE, and ANE are prohibited in antiferromagnetic bilayer $1T$-CrTe$_2$ due to the existence of the spacetime inversion symmetry, whereas all of them are activated in ferromagnetic trilayer $1T$-CrTe$_2$ and the MOE is significantly enhanced compared to monolayer $1T$-CrTe$_2$. Our results show that the magneto-optical and anomalous transports proprieties of $1T$-CrTe$_2$ can be effectively modulated by altering spin direction and layer number.
Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in a variety of ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show a universal scaling behavior of anomalous Hall conductivity $sigma_{xy}$ as a function of longitudinal conductivity $sigma_{xx}$ over five orders of magnitude, which is well explained by a recent theory of the AHE taking into account both the intrinsic and extrinsic contributions. ANE is closely related with AHE and provides us with further information about the low-temperature electronic state of itinerant ferromagnets. Temperature dependence of transverse Peltier coefficient $alpha_{xy}$ shows an almost similar behavior among various ferromagnets, and this behavior is in good agreement quantitatively with that expected from the Mott rule.
The anomalous Hall effect in a magnetic two-dimensional electron gas with Rashba spin-orbit coupling is studied within the Kubo-Streda formalism in the presence of pointlike potential impurities. We find that all contributions to the anomalous Hall conductivity vanish to leading order in disorder strength when both chiral subbands are occupied. In the situation that only the majority subband is occupied, all terms are finite in the weak scattering limit and the total anomalous Hall conductivity is dominated by skew scattering. We compare our results to previous treatments and resolve some of the discrepancies present in the literature.
A short review paper for the quantum anomalous Hall effect. A substantially extended one is published as Adv. Phys. 64, 227 (2015).
Anomalous Nernst effect, a result of charge current driven by temperature gradient, provides a probe of the topological nature of materials due to its sensitivity to the Berry curvature near the Fermi level. Fe3GeTe2, one important member of the recently discovered two-dimensional van der Waals magnetic materials, offers a unique platform for anomalous Nernst effect because of its metallic and topological nature. Here, we report the observation of large anomalous Nernst effect in Fe3GeTe2. The anomalous Hall angle and anomalous Nernst angle are about 0.07 and 0.09 respectively, far larger than those in common ferromagnets. By utilizing the Mott relation, these large angles indicate a large Berry curvature near the Fermi level, consistent with the recent proposal for Fe3GeTe2 as a topological nodal line semimetal candidate. Our work provides evidence of Fe3GeTe2 as a topological ferromagnet, and demonstrates the feasibility of using two-dimensional magnetic materials and their band topology for spin caloritronics applications.
We propose a new topological quantum state of matter---the two-dimensional (2D) Weyl half semimetal (WHS), which features 2D Weyl points at Fermi level belonging to a single spin channel, such that the low-energy electrons are described by fully spin-polarized 2D Weyl fermions. We predict its realization in the ground state of monolayer PtCl$_3$. We show that the material is a half metal with an in-plane magnetization, and its Fermi surface consists of a pair of fully spin-polarized Weyl points protected by a mirror symmetry, which are robust against spin-orbit coupling. Remarkably, we show that the WHS state is a critical state at the topological phase transition between two quantum anomalous Hall insulator phases with opposite Chern numbers, such that a switching between quantum anomalous Hall states can be readily achieved by rotating the magnetization direction. Our findings demonstrate that WHS offers new opportunity to control the chiral edge channels, which will be useful for designing new topological electronic devices.