The optical and near-infrared (OIR) polarization of starlight is typically understood to arise from the dichroic extinction of that light by dust grains whose axes are aligned with respect to a local magnetic-field. The size distribution of the aligned-grain population can be constrained by measurements of the wavelength dependence of the polarization. The leading physical model for producing the alignment is radiative alignment-torques (RAT), which predicts that the most efficiently aligned grains are those with sizes larger than the wavelengths of light composing the local radiation field. Therefore, for a given grain-size distribution, the wavelength at which the polarization reaches a maximum ($lambda_mathrm{max}$) should correlate with the characteristic reddening along the line of sight between the dust grains and the illumination source. A correlation between $lambda_mathrm{max}$ and reddening has been previously established for extinctions up to $A_Vapprox4$ mag. We extend the study of this relationship to a larger sample of stars in the Taurus cloud complex, including extinctions $A_V>10$ mag. We confirm the earlier results for $A_V<4$ mag, but find that the $lambda_mathrm{max}$ vs. $A_V$ relationship bifurcates above $A_Vapprox4$ mag, with part of the sample continuing the previously observed relationship and the remaining part exhibiting a significantly steeper rise. We propose that the data exhibiting the steep rise represent lines-of-sight towards high density clumps, where grain coagulation has taken place. We present RAT-based modeling supporting these hypotheses. These results indicate that multi-band OIR polarimetry is a powerful tool for tracing grain growth in molecular clouds, independent of uncertainties in the dust temperature and emissivity.