Low Latency Cross-Shard Transactions in Coded Blockchain


Abstract in English

Although blockchain, the supporting technology of Bitcoin and various cryptocurrencies, has offered a potentially effective framework for numerous applications, it still suffers from the adverse affects of the impossibility triangle. Performance, security, and decentralization of blockchains normally do not scale simultaneously with the number of participants in the network. The recent introduction of error correcting codes in sharded blockchain by Li et al. partially settles this trilemma, boosting throughput without compromising security and decentralization. In this paper, we improve the coded sharding scheme in three ways. First, we propose a novel 2-Dimensional Sharding strategy, which inherently supports cross-shard transactions, alleviating the need for complicated inter-shard communication protocols. Second, we employ distributed storage techniques in the propagation of blocks, improving latency under restricted bandwidth. Finally, we incorporate polynomial cryptographic primitives of low degree, which brings coded blockchain techniques into the realm of feasible real-world parameters.

Download