Do you want to publish a course? Click here

Dynamic role of dust in formation of molecular clouds

62   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dust is the usual minor component of the interstellar medium. Its dynamic role in the contraction of the diffuse gas into molecular clouds is commonly assumed to be negligible because of the small mass fraction, $f simeq 0.01$. However, as shown in this study, the collective motion of dust grains with respect to the gas may considerably contribute to the destabilisation of the medium on scales $lambda lesssim lambda_J$, where $lambda_J$ is the Jeans length-scale. The linear perturbations of the uniform self-gravitating gas at rest are marginally stable at $lambda simeq lambda_J$, but as soon as the drift of grains is taken into account, they begin growing at a rate approximately equal to $(f tau)^{1/3} t^{-1}_{ff}$, where $tau$ is the stopping time of grains expressed in units of the free fall time of the cloud, $t_{ff}$. The physical mechanism responsible for such a weak dependence of the growth rate on $f$ is the resonance of heavy sound waves stopped by the self-gravity of gas with weak gravitational attraction caused by perturbations of the dust fraction. Once there is stationary subsonic bulk drift of the dust, the growing gas-dust perturbations at $lambda < lambda_J$ become waves propagating with the drift velocity projected onto the wavevector. Their growth has a resonant nature as well and the growth rate is substantially larger than that of the recently discovered resonant instability of gas-dust mixture in the absence of self-gravity. The new instabilities can facilitate gravitational contraction of cold interstellar gas into clouds and additionally produce dusty domains of sub-Jeans size at different stages of molecular cloud formation and evolution.



rate research

Read More

We present high resolution ($1024^3$) simulations of super-/hyper-sonic isothermal hydrodynamic turbulence inside an interstellar molecular cloud (resolving scales of typically 20 -- 100 AU), including a multi-disperse population of dust grains, i.e., a range of grain sizes is considered. Due to inertia, large grains (typical radius $a gtrsim 1.0,mu$m) will decouple from the gas flow, while small grains ($alesssim 0.1,mu$m) will tend to better trace the motions of the gas. We note that simulations with purely solenoidal forcing show somewhat more pronounced decoupling and less clustering compared to simulations with purely compressive forcing. Overall, small and large grains tend to cluster, while intermediate-size grains show essentially a random isotropic distribution. As a consequence of increased clustering, the grain-grain interaction rate is locally elevated; but since small and large grains are often not spatially correlated, it is unclear what effect this clustering would have on the coagulation rate. Due to spatial separation of dust and gas, a diffuse upper limit to the grain sizes obtained by condensational growth is also expected, since large (decoupled) grains are not necessarily located where the growth species in the molecular gas is.
We perform numerical simulations of dusty, supersonic turbulence in molecular clouds. We model 0.1, 1 and 10 {mu}m sized dust grains at an initial dust-to-gas mass ratio of 1:100, solving the equations of combined gas and dust dynamics where the dust is coupled to the gas through a drag term. We show that, for 0.1 and 1 {mu}m grains, the dust-to-gas ratio deviates by typically 10-20% from the mean, since the stopping time of the dust due to gas drag is short compared to the dynamical time. Contrary to previous findings, we find no evidence for orders of magnitude fluctuation in the dust-to-gas ratio for 0.1 {mu}m grains. Larger, 10 {mu}m dust grains may have dust-to-gas ratios increased by up to an order of magnitude locally. Both small (0.1 {mu}m) and large ($gtrsim$ 1 {mu}m) grains trace the large-scale morphology of the gas, however we find evidence for size-sorting of grains, where turbulence preferentially concentrates larger grains into dense regions. Size-sorting may help to explain observations of coreshine from dark clouds, and why extinction laws differ along lines of sight through molecular clouds in the Milky Way compared to the diffuse interstellar medium.
Density profiles of isolated cores derived from thermal dust continuum emission rely on models of dust properties, such as mass opacity, which are poorly constrained. With complementary measures from near-infrared extinction maps, we can assess the reliability of commonly-used dust models. In this work, we compare Herschel-derived maps of the optical depth with equivalent maps derived from CFHT WIRCAM near-infrared observations for three isolated cores: CB68, L429, and L1552. We assess the dust opacities provided from four models: OH1a, OH5a, Orm1, and Orm4. Although the consistency of the models differs between the three sources, the results suggest that the optical properties of dust in the envelopes of the cores are best described by either silicate and bare graphite grains (e.g., Orm1) or carbonaceous grains with some coagulation and either thin or no ice mantles (e.g., OH5a). None of the models, however, individually produced the most consistent optical depth maps for every source. The results suggest that either the dust in the cores is not well described by any one dust property model, the application of the dust models cannot be extended beyond the very center of the cores, or more complex SED fitting functions are necessary.
New sensitive CO(2-1) observations of the 30 Doradus region in the Large Magellanic Cloud are presented. We identify a chain of three newly discovered molecular clouds we name KN1, KN2 and KN3 lying within 2--14 pc in projection from the young massive cluster R136 in 30 Doradus. Excited H$_2$ 2.12$mu$m emission is spatially coincident with the molecular clouds, but ionized Br$gamma$ emission is not. We interpret these observations as the tails of pillar-like structures whose ionized heads are pointing towards R136. Based on infrared photometry, we identify a new generation of stars forming within this structure.
We present Submillimeter Array (SMA) observations of seven massive molecular clumps which are dark in the far-infrared for wavelengths up to 70 $mu$m. Our 1.3 mm continuum images reveal 44 dense cores, with gas masses ranging from 1.4 to 77.1 M$_{odot}$. Twenty-nine dense cores have masses greater than 8 M$_{odot}$ and the other fifteen dense cores have masses between 1.4 and 7.5 M$_{odot}$. Assuming the core density follows a power-law in radius $rho propto r^{-b}$, the index $b$ is found to be between 0.6 and 2.1 with a mean value of 1.3. The virial analysis reveals that the dense cores are not in virial equilibrium. CO outflow emission was detected toward 6 out of 7 molecular clumps and associated with 17 dense cores. For five of these cores, CO emissions appear to have line-wings at velocities of greater than 30 km s$^{-1}$ with respect to the source systemic velocity, which indicates that most of the clumps harbor protostars and thus are not quiescent in star formation. The estimated outflow timescale increase with core mass, which likely indicates that massive cores have longer accretion timescale than that of the less massive ones. The fragmentation analysis shows that the mass of low-mass and massive cores are roughly consistent with thermal and turbulent Jeans masses, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا