Do you want to publish a course? Click here

Resource-Efficient Quantum Computing by Breaking Abstractions

114   0   0.0 ( 0 )
 Added by Yunong Shi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Building a quantum computer that surpasses the computational power of its classical counterpart is a great engineering challenge. Quantum software optimizations can provide an accelerated pathway to the first generation of quantum computing applications that might save years of engineering effort. Current quantum software stacks follow a layered approach similar to the stack of classical computers, which was designed to manage the complexity. In this review, we point out that greater efficiency of quantum computing systems can be achieved by breaking the abstractions between these layers. We review several works along this line, including two hardware-aware compilation optimizations that break the quantum Instruction Set Architecture (ISA) abstraction and two error-correction/information-processing schemes that break the qubit abstraction. Last, we discuss several possible future directions.



rate research

Read More

Fault-tolerant schemes can use error correction to make a quantum computation arbitrarily ac- curate, provided that errors per physical component are smaller than a certain threshold and in- dependent of the computer size. However in current experiments, physical resource limitations like energy, volume or available bandwidth induce error rates that typically grow as the computer grows. Taking into account these constraints, we show that the amount of error correction can be opti- mized, leading to a maximum attainable computational accuracy. We find this maximum for generic situations where noise is scale-dependent. By inverting the logic, we provide experimenters with a tool to finding the minimum resources required to run an algorithm with a given computational accuracy. When combined with a full-stack quantum computing model, this provides the basis for energetic estimates of future large-scale quantum computers.
In Federated Learning (FL), a global statistical model is developed by encouraging mobile users to perform the model training on their local data and aggregating the output local model parameters in an iterative manner. However, due to limited energy and computation capability at the mobile devices, the performance of the model training is always at stake to meet the objective of local energy minimization. In this regard, Multi-access Edge Computing (MEC)-enabled FL addresses the tradeoff between the model performance and the energy consumption of the mobile devices by allowing users to offload a portion of their local dataset to an edge server for the model training. Since the edge server has high computation capability, the time consumption of the model training at the edge server is insignificant. However, the time consumption for dataset offloading from mobile users to the edge server has a significant impact on the total time consumption. Thus, resource management in MEC-enabled FL is challenging, where the objective is to reduce the total time consumption while saving the energy consumption of the mobile devices. In this paper, we formulate an energy-aware resource management for MEC-enabled FL in which the model training loss and the total time consumption are jointly minimized, while considering the energy limitation of mobile devices. In addition, we recast the formulated problem as a Generalized Nash Equilibrium Problem (GNEP) to capture the coupling constraints between the radio resource management and dataset offloading. We then analyze the impact of the dataset offloading and computing resource allocation on the model training loss, time, and the energy consumption.
160 - Mushu Li , Nan Cheng , Jie Gao 2020
In this paper, we study unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) with the objective to optimize computation offloading with minimum UAV energy consumption. In the considered scenario, a UAV plays the role of an aerial cloudlet to collect and process the computation tasks offloaded by ground users. Given the service requirements of users, we aim to maximize UAV energy efficiency by jointly optimizing the UAV trajectory, the user transmit power, and computation load allocation. The resulting optimization problem corresponds to nonconvex fractional programming, and the Dinkelbach algorithm and the successive convex approximation (SCA) technique are adopted to solve it. Furthermore, we decompose the problem into multiple subproblems for distributed and parallel problem solving. To cope with the case when the knowledge of user mobility is limited, we adopt a spatial distribution estimation technique to predict the location of ground users so that the proposed approach can still be applied. Simulation results demonstrate the effectiveness of the proposed approach for maximizing the energy efficiency of UAV.
90 - Zhenyu Cai 2021
To achieve the practical applications of near-term noisy quantum devices, low-cost ways to mitigate the noise damages in the devices are essential. In many applications, the noiseless state we want to prepare is often a pure state, which has recently inspired a range of purification-based quantum error mitigation proposals. The existing proposals either are limited to the suppressions of only the leading-order state preparation errors, or require a large number of long-range gates that might be challenging to implement depending on the qubit architecture. This article will provide an overview of the different purification-based quantum error mitigation schemes and propose a resource-efficient scheme that can correct state preparation errors up to any order while requiring only half of the qubits and less than half of the long-range gates compared to before.
We present QEst, a procedure to systematically generate approximations for quantum circuits to reduce their CNOT gate count. Our approach employs circuit partitioning for scalability with procedures to 1) reduce circuit length using approximate synthesis, 2) improve fidelity by running circuits that represent key samples in the approximation space, and 3) reason about approximation upper bound. Our evaluation results indicate that our approach of dissimilar approximations provides close fidelity to the original circuit. Overall, the results indicate that QEst can reduce CNOT gate count by 30-80% on ideal systems and decrease the impact of noise on existing and near-future quantum systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا