No Arabic abstract
The muon campus program at Fermilab includes the Mu2e experiment that will search for a charged-lepton flavor violating processes where a negative muon converts into an electron in the field of an aluminum nucleus, improving by four orders of magnitude the search sensitivity reached so far. Mu2es Trigger and Data Acquisition System (TDAQ) uses otsdaq as its solution. Developed at Fermilab, otsdaq uses the artdaq DAQ framework and art analysis framework, under the-hood, for event transfer, filtering, and processing. otsdaq is an online DAQ software suite with a focus on flexibility and scalability, while providing a multi-user, web-based, interface accessible through the Chrome or Firefox web browser. The detector Read Out Controller (ROC), from the tracker and calorimeter, stream out zero-suppressed data continuously to the Data Transfer Controller (DTC). Data is then read over the PCIe bus to a software filter algorithm that selects events which are finally combined with the data flux that comes froma Cosmic Ray Ve to System (CRV). A Detector Control System (DCS) for monitoring, controlling, alarming, and archiving has been developed using the Experimental Physics and Industrial Control System (EPICS) Open Source Platform. The DCS System has also been itegrated into otsdaq. The installation of the TDAQ and the DCS systems in the Mu2e building is planned for 2021-2022, and a prototype has been built at Fermilabs Feynman Computing Center. We report here on the developments and achievements of the integration of Mu2es DCS system into the online otsdaq software.
The Belle II experiment at the SuperKEKB $e^{+}e^{-}$ collider in KEK, Japan, started physics data-taking with a complete detector from early 2019 with the primary physics goal of probing new physics in heavy quark and lepton decays. An online trigger system is indispensable for the Belle II experiment to reduce the beam background events associated with high electron and positron beam currents without sacrificing the target physics-oriented events. During the Belle II operation upon beam collision, the trigger system must be consistently controlled and its status must be carefully monitored in the process of data acquisition against unexpected situations. For this purpose, we have developed a slow control system for the Belle II trigger system. Around seventy thousand configuration parameters are saved in the Belle II central database server for every run when a run starts and stops. These parameters play an essential role in offline validation of the quality of runs. Around three thousand real-time variables are stored in the Belle II main archiving server, and the trend of some of these variables are regularly used for online and offline monitoring purposes. Various operator interface tools have been prepared and used. When the configuration parameters are not correctly applied, or some of the processes are unexpectedly terminated, the slow control system detects it, stops the data-taking process, and generates an alarm. In this article, we report how we constructed the Belle II trigger slow control system, and how we successfully managed to operate during its initial stage.
The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to monitor and control the detector in real time. Environmental conditions also need to be monitored for stable operation of detectors as well as for safety reasons. In this article, we report the design, hardware, operation, and performance of the slow control system.
We propose an evolution of the Mu2e experiment, called Mu2e-II, that would leverage advances in detector technology and utilize the increased proton intensity provided by the Fermilab PIP-II upgrade to improve the sensitivity for neutrinoless muon-to-electron conversion by one order of magnitude beyond the Mu2e experiment, providing the deepest probe of charged lepton flavor violation in the foreseeable future. Mu2e-II will use as much of the Mu2e infrastructure as possible, providing, where required, improvements to the Mu2e apparatus to accommodate the increased beam intensity and cope with the accompanying increase in backgrounds.
We explore the feasibility of a next-generation Mu2e experiment that uses Project-X beams to achieve a sensitivity approximately a factor ten better than the currently planned Mu2e facility.
The FragmentatiOn Of Target (FOOT) experiment aims to provide precise nuclear cross-section measurements for two different fields: hadrontherapy and radio-protection in space. The main reason is the important role the nuclear fragmentation process plays in both fields, where the health risks caused by radiation are very similar and mainly attributable to the fragmentation process. The FOOT experiment has been developed in such a way that the experimental setup is easily movable and fits the space limitations of the experimental and treatment rooms available in hadrontherapy treatment centers, where most of the data takings are carried out. The Trigger and Data Acquisition system needs to follow the same criteria and it should work in different laboratories and in different conditions. It has been designed to acquire the largest sample size with high accuracy in a controlled and online-monitored environment. The data collected are processed in real-time for quality assessment and are available to the DAQ crew and detector experts during data taking.