In the present paper, we prove that a local derivation on the octonion (Cayley) algebra $mathbb{O}$ over an arbitrary field, satisfying some conditions is a derivation, and every 2-local derivation on $mathbb{O}$ is a Jordan derivation.
2-local derivation is a generalized derivation for a Lie algebra, which plays an important role to the study of local properties of the structure of the Lie algebra. In this paper, we prove that every 2-local derivation on the twisted Heisenberg-Virasoro algebra is a derivation.
We show that any local derivation on the solvable Leibniz algebras with model or abelian nilradicals, whose the dimension of complementary space is maximal is a derivation. We show that solvable Leibniz algebras with abelian nilradicals, which have 1-dimension complementary space, admit local derivations which are not derivations. Moreover, similar problem concerning 1-local derivations of such algebras are investigated and an example of solvable Leibniz algebra given such that any 2-local derivation on it is a derivation, but which admit local derivations which are not derivations.
In the present paper, we prove that every local and $2$-local derivation of the complex finite-dimensional simple Filippov algebra is a derivation. As a corollary we have the description of all local and $2$-local derivations of complex finite-dimensional semisimple Filippov algebras. All local derivations of the ternary Malcev algebra $M_8$ are described. It is the first example of a finite-dimensional simple algebra that admits pure local derivations, i.e. algebra admits a local derivation which is not a derivation.
We characterize derivations and 2-local derivations from $M_{n}(mathcal{A})$ into $M_{n}(mathcal{M})$, $n ge 2$, where $mathcal{A}$ is a unital algebra over $mathbb{C}$ and $mathcal{M}$ is a unital $mathcal{A}$-bimodule. We show that every derivation $D: M_{n}(mathcal{A}) to M_{n}(mathcal{M})$, $n ge 2,$ is the sum of an inner derivation and a derivation induced by a derivation from $mathcal{A}$ to $mathcal{M}$. We say that $mathcal{A}$ commutes with $mathcal{M}$ if $am=ma$ for every $ainmathcal{A}$ and $minmathcal{M}$. If $mathcal{A}$ commutes with $mathcal{M}$ we prove that every inner 2-local derivation $D: M_{n}(mathcal{A}) to M_{n}(mathcal{M})$, $n ge 2$, is an inner derivation. In addition, if $mathcal{A}$ is commutative and commutes with $mathcal{M}$, then every 2-local derivation $D: M_{n}(mathcal{A}) to M_{n}(mathcal{M})$, $n ge 2$, is a derivation.
2-local derivation is a generalized derivation for a Lie algebra, which plays an important role to the study of local properties of the structure of the Lie algebra. In this paper, we prove that every 2-local derivation on the conformal Galilei algebra is a derivation.