MLatticeABC: Generic Lattice Constant Prediction of Crystal Materials using Machine Learning


Abstract in English

Lattice constants such as unit cell edge lengths and plane angles are important parameters of the periodic structures of crystal materials. Predicting crystal lattice constants has wide applications in crystal structure prediction and materials property prediction. Previous work has used machine learning models such as neural networks and support vector machines combined with composition features for lattice constant prediction and has achieved a maximum performance for cubic structures with an average $R^2$ of 0.82. Other models tailored for special materials family of a fixed form such as ABX3 perovskites can achieve much higher performance due to the homogeneity of the structures. However, these models trained with small datasets are usually not applicable to generic lattice parameter prediction of materials with diverse compositions. Herein, we report MLatticeABC, a random forest machine learning model with a new descriptor set for lattice unit cell edge length ($a,b,c$) prediction which achieves an R2 score of 0.979 for lattice parameter $a$ of cubic crystals and significant performance improvement for other crystal systems as well. Source code and trained models can be freely accessed at https://github.com/usccolumbia/MLatticeABC

Download