Do you want to publish a course? Click here

A Method for Constraint Inference Using Pose and Wrench Measurements

74   0   0.0 ( 0 )
 Added by Michael Hagenow
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Many physical tasks such as pulling out a drawer or wiping a table can be modeled with geometric constraints. These geometric constraints are characterized by restrictions on kinematic trajectories and reaction wrenches (forces and moments) of objects under the influence of the constraint. This paper presents a method to infer geometric constraints involving unmodeled objects in human demonstrations using both kinematic and wrench measurements. Our approach takes a recording of a human demonstration and determines what constraints are present, when they occur, and their parameters (e.g. positions). By using both kinematic and wrench information, our methods are able to reliably identify a variety of constraint types, even if the constraints only exist for short durations within the demonstration. We present a systematic approach to fitting arbitrary scleronomic constraint models to kinematic and wrench measurements. Reaction forces are estimated from measurements by removing friction. Position, orientation, force, and moment error metrics are developed to provide systematic comparison between constraint models. By conducting a user study, we show that our methods can reliably identify constraints in realistic situations and confirm the value of including forces and moments in the model regression and selection process.



rate research

Read More

Maximum likelihood constraint inference is a powerful technique for identifying unmodeled constraints that affect the behavior of a demonstrator acting under a known objective function. However, it was originally formulated only for discrete state-action spaces. Continuous dynamics are more useful for modeling many real-world systems of interest, including the movements of humans and robots. We present a method to generate a tabular state-action space that approximates continuous dynamics and can be used for constraint inference on demonstrations that obey the true system dynamics. We then demonstrate accurate constraint inference on nonlinear pendulum systems with 2- and 4-dimensional state spaces, and show that performance is robust to a range of hyperparameters. The demonstrations are not required to be fully optimal with respect to the objective, and the most likely constraints can be identified even when demonstrations cover only a small portion of the state space. For these reasons, the proposed approach may be especially useful for inferring constraints on human demonstrators, which has important applications in human-robot interaction and biomechanical medicine.
Tactile perception is central to robot manipulation in unstructured environments. However, it requires contact, and a mature implementation must infer object models while also accounting for the motion induced by the interaction. In this work, we present a method to estimate both object shape and pose in real-time from a stream of tactile measurements. This is applied towards tactile exploration of an unknown object by planar pushing. We consider this as an online SLAM problem with a nonparametric shape representation. Our formulation of tactile inference alternates between Gaussian process implicit surface regression and pose estimation on a factor graph. Through a combination of local Gaussian processes and fixed-lag smoothing, we infer object shape and pose in real-time. We evaluate our system across different objects in both simulated and real-world planar pushing tasks.
In this work, we present a per-instant pose optimization method that can generate configurations that achieve specified pose or motion objectives as best as possible over a sequence of solutions, while also simultaneously avoiding collisions with static or dynamic obstacles in the environment. We cast our method as a multi-objective, non-linear constrained optimization-based IK problem where each term in the objective function encodes a particular pose objective. We demonstrate how to effectively incorporate environment collision avoidance as a single term in this multi-objective, optimization-based IK structure, and provide solutions for how to spatially represent and organize external environments such that data can be efficiently passed to a real-time, performance-critical optimization loop. We demonstrate the effectiveness of our method by comparing it to various state-of-the-art methods in a testbed of simulation experiments and discuss the implications of our work based on our results.
This paper introduces the first, open source software library for Constraint Consistent Learning (CCL). It implements a family of data-driven methods that are capable of (i) learning state-independent and -dependent constraints, (ii) decomposing the behaviour of redundant systems into task- and null-space parts, and (iii) uncovering the underlying null space control policy. It is a tool to analyse and decompose many everyday tasks, such as wiping, reaching and drawing. The library also includes several tutorials that demonstrate its use with both simulated and real world data in a systematic way. This paper documents the implementation of the library, tutorials and associated helper methods. The software is made freely available to the community, to enable code reuse and allow users to gain in-depth experience in statistical learning in this area.
122 - Sanqing Qu , Guang Chen , Canbo Ye 2018
Detecting vehicles with strong robustness and high efficiency has become one of the key capabilities of fully autonomous driving cars. This topic has already been widely studied by GPU-accelerated deep learning approaches using image sensors and 3D LiDAR, however, few studies seek to address it with a horizontally mounted 2D laser scanner. 2D laser scanner is equipped on almost every autonomous vehicle for its superiorities in the field of view, lighting invariance, high accuracy and relatively low price. In this paper, we propose a highly efficient search-based L-Shape fitting algorithm for detecting positions and orientations of vehicles with a 2D laser scanner. Differing from the approach to formulating LShape fitting as a complex optimization problem, our method decomposes the L-Shape fitting into two steps: L-Shape vertexes searching and L-Shape corner localization. Our approach is computationally efficient due to its minimized complexity. In on-road experiments, our approach is capable of adapting to various circumstances with high efficiency and robustness.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا