Do you want to publish a course? Click here

GripNet: Graph Information Propagation on Supergraph for Heterogeneous Graphs

128   0   0.0 ( 0 )
 Added by Hao Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Heterogeneous graph representation learning aims to learn low-dimensional vector representations of different types of entities and relations to empower downstream tasks. Existing methods either capture semantic relationships but indirectly leverage node/edge attributes in a complex way, or leverage node/edge attributes directly without taking semantic relationships into account. When involving multiple convolution operations, they also have poor scalability. To overcome these limitations, this paper proposes a flexible and efficient Graph information propagation Network (GripNet) framework. Specifically, we introduce a new supergraph data structure consisting of supervertices and superedges. A supervertex is a semantically-coherent subgraph. A superedge defines an information propagation path between two supervertices. GripNet learns new representations for the supervertex of interest by propagating information along the defined path using multiple layers. We construct multiple large-scale graphs and evaluate GripNet against competing methods to show its superiority in link prediction, node classification, and data integration.



rate research

Read More

Graph neural networks are emerging as continuation of deep learning success w.r.t. graph data. Tens of different graph neural network variants have been proposed, most following a neighborhood aggregation scheme, where the node features are updated via aggregating features of its neighboring nodes from layer to layer. Though related research surges, the power of GNNs are still not on-par-with their counterpart CNNs in computer vision and RNNs in natural language processing. We rethink this problem from the perspective of information propagation, and propose to enhance information propagation among GNN layers by combining heterogeneous aggregations. We argue that as richer information are propagated from shallow to deep layers, the discriminative capability of features formulated by GNN can benefit from it. As our first attempt in this direction, a new generic GNN layer formulation and upon this a new GNN variant referred as HAG-Net is proposed. We empirically validate the effectiveness of HAG-Net on a number of graph classification benchmarks, and elaborate all the design options and criterions along with.
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data. Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks by simply operating on graph-smoothed node features, rather than using end-to-end learned feature hierarchies that are challenging to scale to large graphs. In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities. We propose Neighbor Averaging over Relation Subgraphs (NARS), which trains a classifier on neighbor-averaged features for randomly-sampled subgraphs of the metagraph of relations. We describe optimizations to allow these sets of node features to be computed in a memory-efficient way, both at training and inference time. NARS achieves a new state of the art accuracy on several benchmark datasets, outperforming more expensive GNN-based methods
Graph neural networks (GNNs) have been popularly used in analyzing graph-structured data, showing promising results in various applications such as node classification, link prediction and network recommendation. In this paper, we present a new graph attention neural network, namely GIPA, for attributed graph data learning. GIPA consists of three key components: attention, feature propagation and aggregation. Specifically, the attention component introduces a new multi-layer perceptron based multi-head to generate better non-linear feature mapping and representation than conventional implementations such as dot-product. The propagation component considers not only node features but also edge features, which differs from existing GNNs that merely consider node features. The aggregation component uses a residual connection to generate the final embedding. We evaluate the performance of GIPA using the Open Graph Benchmark proteins (ogbn-proteins for short) dataset. The experimental results reveal that GIPA can beat the state-of-the-art models in terms of prediction accuracy, e.g., GIPA achieves an average test ROC-AUC of $0.8700pm 0.0010$ and outperforms all the previous methods listed in the ogbn-proteins leaderboard.
The use of drug combinations often leads to polypharmacy side effects (POSE). A recent method formulates POSE prediction as a link prediction problem on a graph of drugs and proteins, and solves it with Graph Convolutional Networks (GCNs). However, due to the complex relationships in POSE, this method has high computational cost and memory demand. This paper proposes a flexible Tri-graph Information Propagation (TIP) model that operates on three subgraphs to learn representations progressively by propagation from protein-protein graph to drug-drug graph via protein-drug graph. Experiments show that TIP improves accuracy by 7%+, time efficiency by 83$times$, and space efficiency by 3$times$.
Attention mechanism enables the Graph Neural Networks(GNNs) to learn the attention weights between the target node and its one-hop neighbors, the performance is further improved. However, the most existing GNNs are oriented to homogeneous graphs and each layer can only aggregate the information of one-hop neighbors. Stacking multi-layer networks will introduce a lot of noise and easily lead to over smoothing. We propose a Multi-hop Heterogeneous Neighborhood information Fusion graph representation learning method (MHNF). Specifically, we first propose a hybrid metapath autonomous extraction model to efficiently extract multi-hop hybrid neighbors. Then, we propose a hop-level heterogeneous Information aggregation model, which selectively aggregates different-hop neighborhood information within the same hybrid metapath. Finally, a hierarchical semantic attention fusion model (HSAF) is proposed, which can efficiently integrate different-hop and different-path neighborhood information respectively. This paper can solve the problem of aggregating the multi-hop neighborhood information and can learn hybrid metapaths for target task, reducing the limitation of manually specifying metapaths. In addition, HSAF can extract the internal node information of the metapaths and better integrate the semantic information of different levels. Experimental results on real datasets show that MHNF is superior to state-of-the-art methods in node classification and clustering tasks (10.94% - 69.09% and 11.58% - 394.93% relative improvement on average, respectively).

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا