No Arabic abstract
This study explored the association between the five key air pollutants (Nitrogen Dioxide (NO2), Sulphur Dioxide (SO2), Particulate Matter (PM2.5, PM10), and Carbon Monoxide (CO)) and COVID-19 incidences in India. The COVID-19 confirmed cases, air pollution concentration and meteorological variables (temperature, wind speed, surface pressure) for district and city scale were obtained for 2019 and 2020. The location-based air pollution observations were converted to a raster surface using interpolation. The deaths and positive cases are reported so far were found highest in Mumbai (436 and 11394), followed by Ahmedabad (321 and 4991), Pune (129 and 2129), Kolkata (99 and 783), Indore (83 and 1699), Jaipur (53 and 1111), Ujjain (42 and 201), Surat (37 and 799), Vadodara (31 and 400), Chennai (23 and 2647), Bhopal (22 and 652), Thane (21 and 1889), respectively. Unlike the other studies, this study has not found any substantial association between air pollution and COVID-19 incidences at the district level. Considering the number of confirmed cases, the coefficient of determination (R2) values estimated as 0.003 for PM2.5, 0.002 for PM10 and SO2, 0.001 for CO, and 0.0002 for NO2, respectively. This suggests an absolute no significant association between air pollution and COVID-19 incidences (both confirmed cases and death) in India. The same association was observed for the number of deaths as well. For COVID-19 confirmed cases, none of the five pollutants has exhibited any statistically significant association. Additionally, except the wind speed, the climate variables have no produced any statistically significant association with the COVID-19 incidences.
Since December 2019, the world has been witnessing the gigantic effect of an unprecedented global pandemic called Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) - COVID-19. So far, 38,619,674 confirmed cases and 1,093,522 confirmed deaths due to COVID-19 have been reported. In the United States (US), the cases and deaths are recorded as 7,833,851 and 215,199. Several timely researches have discussed the local and global effects of the confounding factors on COVID-19 casualties in the US. However, most of these studies considered little about the time varying associations between and among these factors, which are crucial for understanding the outbreak of the present pandemic. Therefore, this study adopts various relevant approaches, including local and global spatial regression models and machine learning to explore the causal effects of the confounding factors on COVID-19 counts in the contiguous US. Totally five spatial regression models, spatial lag model (SLM), ordinary least square (OLS), spatial error model (SEM), geographically weighted regression (GWR) and multiscale geographically weighted regression (MGWR), are performed at the county scale to take into account the scale effects on modelling. For COVID-19 cases, ethnicity, crime, and income factors are found to be the strongest covariates and explain the maximum model variances. For COVID-19 deaths, both (domestic and international) migration and income factors play a crucial role in explaining spatial differences of COVID-19 death counts across counties. The local coefficient of determination (R2) values derived from the GWR and MGWR models are found very high over the Wisconsin-Indiana-Michigan (the Great Lake) region, as well as several parts of Texas, California, Mississippi and Arkansas.
We propose the SH model, a simplified version of the well-known SIR compartmental model of infectious diseases. With optimized parameters and initial conditions, this time-invariant two-parameter two-dimensional model is able to fit COVID-19 hospitalization data over several months with high accuracy (mean absolute percentage error below 15%). Moreover, we observed that, when the model is trained on a suitable two-week period around the hospitalization peak for Belgium, it forecasts the subsequent three-month decrease with mean absolute percentage error below 10%. However, when it is trained in the increase phase, it is less successful at forecasting the subsequent evolution.
When testing for a disease such as COVID-19, the standard method is individual testing: we take a sample from each individual and test these samples separately. An alternative is pooled testing (or group testing), where samples are mixed together in different pools, and those pooled samples are tested. When the prevalence of the disease is low and the accuracy of the test is fairly high, pooled testing strategies can be more efficient than individual testing. In this chapter, we discuss the mathematics of pooled testing and its uses during pandemics, in particular the COVID-19 pandemic. We analyse some one- and two-stage pooling strategies under perfect and imperfect tests, and consider the practical issues in the application of such protocols.
The study carries out predictive modeling based on publicly available COVID-19 data for the duration 01 April to 20 June 2020 pertaining to India and five of its most infected states: Maharashtra, Tamil Nadu, Delhi, Gujarat, and Rajasthan using susceptible, infected, recovered, and dead (SIRD) model. The basic reproduction number R0 is derived by exponential growth method using RStudio package R0. The differential equations reflecting SIRD model have been solved using Python 3.7.4 on Jupyter Notebook platform. For visualization, Python Matplotlib 3.2.1 package is used. The study offers insights on peak-date, peak number of COVID-19 infections, and end-date pertaining to India and five of its states. The results could be leveraged by political leadership, health authorities, and industry doyens for policy planning and execution.
In the absence of neither an effective treatment or vaccine and with an incomplete understanding of the epidemiological cycle, Govt. has implemented a nationwide lockdown to reduce COVID-19 transmission in India. To study the effect of social distancing measure, we considered a new mathematical model on COVID-19 that incorporates lockdown effect. By validating our model to the data on notified cases from five different states and overall India, we estimated several epidemiologically important parameters as well as the basic reproduction number ($R_{0}$). Combining the mechanistic mathematical model with different statistical forecast models, we projected notified cases in the six locations for the period May 17, 2020, till May 31, 2020. A global sensitivity analysis is carried out to determine the correlation of two epidemiologically measurable parameters on the lockdown effect and also on $R_{0}$. Our result suggests that lockdown will be effective in those locations where a higher percentage of symptomatic infection exists in the population. Furthermore, a large scale COVID-19 mass testing is required to reduce community infection. Ensemble model forecast suggested a high rise in the COVID-19 notified cases in most of the locations in the coming days. Furthermore, the trend of the effective reproduction number ($R_{t}$) during the projection period indicates if the lockdown measures are completely removed after May 17, 2020, a high spike in notified cases may be seen in those locations. Finally, combining our results, we provided an effective lockdown policy to reduce future COVID-19 transmission in India.