Do you want to publish a course? Click here

Lie-Trotter Splitting for the Nonlinear Stochastic Manakov System

104   0   0.0 ( 0 )
 Added by Guillaume Dujardin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This article analyses the convergence of the Lie-Trotter splitting scheme for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. First, we prove that the strong order of the numerical approximation is 1/2 if the nonlinear term in the system is globally Lipschitz. Then, we show that the splitting scheme has convergence order 1/2 in probability and almost sure order 1/2- in the case of a cubic nonlinearity. We provide several numerical experiments illustrating the aforementioned results and the efficiency of the Lie-Trotter splitting scheme. Finally, we numerically investigate the possible blowup of solutions for some power-law nonlinearities.



rate research

Read More

This article presents and analyses an exponential integrator for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. We first prove that the strong order of the numerical approximation is $1/2$ if the nonlinear term in the system is globally Lipschitz-continuous. Then, we use this fact to prove that the exponential integrator has convergence order $1/2$ in probability and almost sure order $1/2$, in the case of the cubic nonlinear coupling which is relevant in optical fibers. Finally, we present several numerical experiments in order to support our theoretical findings and to illustrate the efficiency of the exponential integrator as well as a modified version of it.
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $mathbb{R}^d$ with stationary law (i.e. spatially homogeneous statistics) and fast decay of correlations on scales larger than the microscale $varepsilon>0$, we establish homogenization error estimates of the order $varepsilon$ in case $dgeq 3$, respectively of the order $varepsilon |log varepsilon|^{1/2}$ in case $d=2$. Previous results in nonlinear stochastic homogenization have been limited to a small algebraic rate of convergence $varepsilon^delta$. We also establish error estimates for the approximation of the homogenized operator by the method of representative volumes of the order $(L/varepsilon)^{-d/2}$ for a representative volume of size $L$. Our results also hold in the case of systems for which a (small-scale) $C^{1,alpha}$ regularity theory is available.
In this article, exact traveling wave solutions of a Wick-type stochastic nonlinear Schr{o}dinger equation and of a Wick-type stochastic fractional Regularized Long Wave-Burgers (RLW-Burgers) equation have been obtained by using an improved computational method. Specifically, the Hermite transform is employed for transforming Wick-type stochastic nonlinear partial differential equations into deterministic nonlinear partial differential equations with integral and fraction order. Furthermore, the required set of stochastic solutions in the white noise space is obtained by using the inverse Hermite transform. Based on the derived solutions, the dynamics of the considered equations are performed with some particular values of the physical parameters. The results reveal that the proposed improved computational technique can be applied to solve various kinds of Wick-type stochastic fractional partial differential equations.
The main aim of this paper is to solve an inverse source problem for a general nonlinear hyperbolic equation. Combining the quasi-reversibility method and a suitable Carleman weight function, we define a map of which fixed point is the solution to the inverse problem. To find this fixed point, we define a recursive sequence with an arbitrary initial term by the same manner as in the classical proof of the contraction principle. Applying a Carleman estimate, we show that the sequence above converges to the desired solution with the exponential rate. Therefore, our new method can be considered as an analog of the contraction principle. We rigorously study the stability of our method with respect to noise. Numerical examples are presented.
We show that the Strang splitting method applied to a diffusion-reaction equation with inhomogeneous general oblique boundary conditions is of order two when the diffusion equation is solved with the Crank-Nicolson method, while order reduction occurs in general if using other Runge-Kutta schemes or even the exact flow itself for the diffusion part. We prove these results when the source term only depends on the space variable, an assumption which makes the splitting scheme equivalent to the Crank-Nicolson method itself applied to the whole problem. Numerical experiments suggest that the second order convergence persists with general nonlinearities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا