Do you want to publish a course? Click here

Competition between fractional quantum Hall liquid and Wigner solid at small fillings: Role of layer thickness and Landau level mixing

322   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

What is the fate of the ground state of a two-dimensional electron system (2DES) at very low Landau level filling factors ($ u$) where interaction reigns supreme? An ordered array of electrons, the so-called Wigner crystal, has long been believed to be the answer. It was in fact the search for the elusive Wigner crystal that led to the discovery of an unexpected, incompressible liquid state, namely the fractional quantum Hall state at $ u=1/3$. Understanding the competition between the liquid and solid ground states has since remained an active field of fundamental research. Here we report experimental data for a new two-dimensional system where the electrons are confined to an AlAs quantum well. The exceptionally high quality of the samples and the large electron effective mass allow us to determine the liquid-solid phase diagram for the two-dimensional electrons in a large range of filling factors near $simeq 1/3$ and $simeq 1/5$. The data and their comparison with an available theoretical phase diagram reveal the crucial role of Landau level mixing and finite electron layer thickness in determining the prevailing ground states.



rate research

Read More

The fractional quantum Hall effect (FQHE) stands as a quintessential manifestation of an interacting two-dimensional electron system. One of FQHEs most fundamental characteristics is the energy gap separating the incompressible ground state from its excitations. Yet, despite nearly four decades of investigations, a quantitative agreement between the theoretically calculated and experimentally measured energy gaps is lacking. Here we report a quantitative comparison between the measured energy gaps and the available theoretical calculations that take into account the role of finite layer thickness and Landau level mixing. Our systematic experimental study of the FQHE energy gaps uses very high-quality two-dimensional electron systems confined to GaAs quantum wells with varying well widths. All the measured energy gaps fall bellow the calculations, but as the electron layer thickness increases, the results of experiments and calculations come closer. Accounting for the role of disorder in a phenomenological manner, we find the measured energy gaps to be in reasonable quantitative agreement with calculations, although some discrepancies remain.
136 - A. T. Hatke , H. Deng , Yang Liu 2018
We study a bilayer system hosting exotic many-body states of two-dimensional electron systems (2DESs) in close proximity but isolated from one another by a thin barrier. One 2DES has low electron density and forms a Wigner solid (WS) at high magnetic fields. The other has much higher density and, in the same field exhibits fractional quantum Hall states (FQHSs). The WS manifests microwave resonances which are understood as pinning modes, collective oscillations of the WS within the small but finite ubiquitous disorder. Our measurements reveal a striking evolution of the pinning mode frequencies of the WS layer with the formation of the FQHSs in the nearby layer, evincing a strong coupling between the WS pinning modes and the state of the 2DES in the adjacent layer, mediated by screening.
166 - H.C. Choi , W. Kang , S. Das Sarma 2007
We present activation gap measurements of the fractional quantum Hall effect (FQHE) in the second Landau level. Signatures for 14 (5) distinct incompressible FQHE states are seen in a high (low) mobility sample with the enigmatic 5/2 even denominator FQHE having a large activation gap of $sim$600 ($sim$300mK) in the high (low) mobility sample. Our measured large relative gaps for 5/2, 7/3, and 8/3 FQHE indicate emergence of exotic FQHE correlations in the second Ladau level, possibly quite different from the well-known lowest Landau level Laughlin correlations. Our measured 5/2 gap is found to be in reasonable agreement with the theoretical gap once finite width and disorder broadening corrections are taken into account.
Specific heat has had an important role in the study of superfluidity and superconductivity, and could provide important information about the fractional quantum Hall effect as well. However, traditional measurements of the specific heat of a two-dimensional electron gas are difficult due to the large background contribution of the phonon bath, even at very low temperatures. Here, we report measurements of the specific heat per electron in the second Landau level by measuring the thermalization time between the electrons and phonons. We observe activated behaviour of the specific heat of the 5/2 and 7/3 fractional quantum Hall states, and extract the entropy by integrating over temperature. Our results are in excellent agreement with previous measurements of the entropy via longitudinal thermopower. Extending the technique to lower temperatures could lead to detection of the non-Abelian entropy predicted for bulk quasiparticles at 5/2 filling
Inter-Landau-level transitions break particle hole symmetry and will choose either the Pfaffian or the anti-Pfaffian state as the absolute ground state at 5/2 filling of the fractional quantum Hall effect. An approach based on truncating the Hilbert space has favored the anti-Pfaffian. A second approach based on an effective Hamiltonian produced the Pfaffian. In this letter perturbation theory is applied to finite sizes without bias to any specific pseudo-potential component. This method also singles out the anti-Pfaffian. A critical piece of the effective Hamiltonian, which was absent in previous studies, reverts the ground state at 5/2 to the anti-Pfaffian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا