No Arabic abstract
Recent experiments with ultracold quantum gases have successfully realized integer-quantized topological charge pumping in optical lattices. Motivated by this progress, we study the effects of static disorder on topological Thouless charge pumping. We focus on the half-filled Rice-Mele model of free spinless fermions and consider random diagonal disorder. In the instantaneous basis, we compute the polarization, the entanglement spectrum, and the local Chern marker. As a first main result, we conclude that the space-integrated local Chern marker is best suited for a quantitative determination of topological transitions in a disordered system. In the time-dependent simulations, we use the time-integrated current to obtain the pumped charge in slowly periodically driven systems. As a second main result, we observe and characterize a disorder-driven breakdown of the quantized charge pump. There is an excellent agreement between the static and the time-dependent ways of computing the pumped charge. The topological transition occurs well in the regime where all states are localized on the given system sizes and is therefore not tied to a delocalization-localization transition of Hamiltonian eigenstates. For individual disorder realizations, the breakdown of the quantized pumping occurs for parameters where the spectral bulk gap inherited from the band gap of the clean system closes, leading to a globally gapless spectrum. As a third main result and with respect to the analysis of finite-size systems, we show that the disorder average of the bulk gap severely overestimates the stability of quantized pumping. A much better estimate is the typical value of the distribution of energy gaps, also called mode of the distribution.
We investigate topological charge pumping in a system of interacting bosons in the tight-binding limit, described by the Rice-Mele model. An appropriate topological invariant for the many-body case is the change of polarization per pump cycle, which we compute for various interaction strengths from infinite-size matrix-product-state simulations. We verify that the charge pumping remains quantized as long as the pump cycle avoids the superfluid phase. In the limit of hardcore bosons, the quantized pumped charge can be understood from single-particle properties such as the integrated Berry curvature constructed from Bloch states, while this picture breaks down at finite interaction strengths. These two properties -- robust quantized charge transport in an interacting system of bosons and the breakdown of a single-particle invariant -- could both be measured with ultracold quantum gases extending a previous experiment [Lohse et al., Nature Phys. 12, 350 (2016)]. Furthermore, we investigate the entanglement spectrum of the Rice-Mele model and argue that the quantized charge pumping is encoded in a winding of the spectral flow in the entanglement spectrum over a pump cycle.
We study coupled non-Hermitian Rice-Mele chains, which consist of Su-Schrieffer-Heeger (SSH) chain system with staggered on-site imaginary potentials. In two dimensional (2D) thermodynamic limit, the exceptional points (EPs) are shown to exhibit topological feature: EPs correspond to topological defects of a real auxiliary 2D vector field in k space, which is obtained from the Bloch states of the non-Hermitian Hamiltonian. As a topological invariant, the topological charges of EPs can be $pm$1/2, obtained by the winding number calculation. Remarkably, we find that such a topological characterization remains for a finite number of coupled chains, even a single chain, in which the momentum in one direction is discrete. It shows that the EPs in the quasi-1D system still exhibit topological characteristics and can be an abridged version for a 2D system with symmetry protected EPs that are robust in perturbations, which proves that topological invariants for a quasi-1D system can be extracted from the projection of the corresponding 2D limit system on it.
We investigate the interacting, one-dimensional Rice-Mele model, a prototypical fermionic model of topological properties. To set the stage, we firstly compute the single-particle spectral function, the local density, and the boundary charge in the absence of interactions. The boundary charge is fully determined by bulk properties indicating a bulk-boundary correspondence. In a large parameter regime it agrees with the one obtained from an effective low-energy theory (arXiv:2004.00463). Secondly, we investigate the robustness of our results towards two-particle interactions. To resum the series of leading logarithms for small gaps, which dismantle plain perturbation theory in the interaction, we use an essentially analytical renormalization group approach. It is controlled for small interactions and can directly be applied to the microscopic lattice model. We benchmark the results against numerical density matrix renormalization group data. The main interaction effect in the bulk is a power-law renormalization of the gap with an interaction dependent exponent. The important characteristics of the boundary charge are unaltered and can be understood from the renormalized bulk properties, elevating the bulk-boundary correspondence to the interacting regime. This requires a consistent treatment not only of the low-energy gap renormalization but also of the high-energy band width one. In contrast to low-energy field theories our renormalization group approach also provides the latter. We show that the interaction spoils the relation between the bulk properties and the number of edge states, consistent with the observation that the Rice-Mele model with finite potential modulation does not reveal any zero-energy edge states.
Understanding the collective behavior of strongly correlated electrons in materials remains a central problem in many-particle quantum physics. A minimal description of these systems is provided by the disordered Fermi-Hubbard model (DFHM), which incorporates the interplay of motion in a disordered lattice with local inter-particle interactions. Despite its minimal elements, many dynamical properties of the DFHM are not well understood, owing to the complexity of systems combining out-of-equilibrium behavior, interactions, and disorder in higher spatial dimensions. Here, we study the relaxation dynamics of doubly occupied lattice sites in the three-dimensional (3D) DFHM using interaction-quench measurements on a quantum simulator composed of fermionic atoms confined in an optical lattice. In addition to observing the widely studied effect of disorder inhibiting relaxation, we find that the cooperation between strong interactions and disorder also leads to the emergence of a dynamical regime characterized by textit{disorder-enhanced} relaxation. To support these results, we develop an approximate numerical method and a phenomenological model that each capture the essential physics of the decay dynamics. Our results provide a theoretical framework for a previously inaccessible regime of the DFHM and demonstrate the ability of quantum simulators to enable understanding of complex many-body systems through minimal models.
Two dimensional topological superconductors (TS) host chiral Majorana modes (MMs) localized at the boundaries. In this work, within quasiclassical approximation we study the effect of disorder on the localization length of MMs in two dimensional spin-orbit (SO) coupled superconductors. We find nonmonotonic behavior of the Majorana localization length as a function of disorder strength. At weak disorder, the Majorana localization length decreases with an increasing disorder strength. Decreasing the disorder scattering time below a critical value $tau_c$, the Majorana localization length starts to increase. The critical scattering time depends on the relative magnitudes of the two ingredients behind TS: SO coupling and exchange field. For dominating SO coupling, $tau_c$ is small and vice versa for the dominating exchange field.