Do you want to publish a course? Click here

An environmental dependence of the physical and structural properties in the Hydra Cluster galaxies

68   0   0.0 ( 0 )
 Added by Ciria Lima Dias
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nearby Hydra Cluster ($sim$50 Mpc) is an ideal laboratory to understand, in detail, the influence of the environment on the morphology and quenching of galaxies in dense environments. We study the Hydra cluster galaxies in the inner regions ($1R_{200}$) of the cluster using data from the Southern Photometric Local Universe Survey (S-PLUS), which uses 12 narrow and broad band filters in the visible region of the spectrum. We analyse structural (Sersic index, effective radius) and physical (colours, stellar masses and star formation rates) properties. Based on this analysis, we find that $sim$88 percent of the Hydra cluster galaxies are quenched. Using the Dressler-Schectman test approach, we also find that the cluster shows possible substructures. Our analysis of the phase-space diagram together with DBSCAN algorithm indicates that Hydra shows an additional substructure that appears to be in front of the cluster centre, which is still falling into it. Our results, thus, suggest that the Hydra Cluster might not be relaxed. We analyse the median Sersic index as a function of wavelength and find that for red ($(u-r)geq$2.3) and early-type galaxies it displays a slight increase towards redder filters (13 and 18 percent, for red and early-type respectively) whereas for blue+green ($(u-r)$<2.3) galaxies it remains constant. Late-type galaxies show a small decrease of the median Sersic index toward redder filters. Also, the Sersic index of galaxies, and thus their structural properties, do not significantly vary as a function of clustercentric distance and density within the cluster; and this is the case regardless of the filter.



rate research

Read More

We review the physical properties of nearby, relatively luminous galaxies, using results from newly available massive data sets together with more detailed observations. First, we present the global distribution of properties, including the optical and ultraviolet luminosity, stellar mass, and atomic gas mass functions. Second, we describe the shift of the galaxy population from late galaxy types in underdense regions to early galaxy types in overdense regions. We emphasize that the scaling relations followed by each galaxy type change very little with environment, with the exception of some minor but detectable effects. The shift in the population is apparent even at the densities of small groups and therefore cannot be exclusively due to physical processes operating in rich clusters. Third, we divide galaxies into four crude types -- spiral, lenticular, elliptical, and merging systems -- and describe some of their more detailed properties. We attempt to put these detailed properties into the global context provided by large surveys.
Using data from the PdBI Arcsecond Whirlpool Survey (PAWS), we have generated the largest extragalactic Giant Molecular Cloud (GMC) catalog to date, containing 1,507 individual objects. GMCs in the inner M51 disk account for only 54% of the total 12CO(1-0) luminosity of the survey, but on average they exhibit physical properties similar to Galactic GMCs. We do not find a strong correlation between the GMC size and velocity dispersion, and a simple virial analysis suggests that 30% of GMCs in M51 are unbound. We have analyzed the GMC properties within seven dynamically-motivated galactic environments, finding that GMCs in the spiral arms and in the central region are brighter and have higher velocity dispersions than inter-arm clouds. Globally, the GMC mass distribution does not follow a simple power law shape. Instead, we find that the shape of the mass distribution varies with galactic environment: the distribution is steeper in inter-arm region than in the spiral arms, and exhibits a sharp truncation at high masses for the nuclear bar region. We propose that the observed environmental variations in the GMC properties and mass distributions are a consequence of the combined action of large-scale dynamical processes and feedback from high mass star formation. We describe some challenges of using existing GMC identification techniques for decomposing the 12CO(1-0) emission in molecule-rich environments, such as M51s inner disk.
We use the EAGLE suite of cosmological hydrodynamical simulations to study how the HI content of present-day galaxies depends on their environment. We show that EAGLE reproduces observed HI mass-environment trends very well, while semi-analytic models typically overpredict the average HI masses in dense environments. The environmental processes act primarily as an on/off switch for the HI content of satellites with stellar mass Mstar>10^9 Msun. At a fixed Mstar, the fraction of HI-depleted satellites increases with increasing host halo mass M200 in response to stronger environmental effects, while at a fixed M200 it decreases with increasing satellite Mstar as the gas is confined by deeper gravitational potentials. HI-depleted satellites reside mostly, but not exclusively, within the virial radius r200 of their host halo. We investigate the origin of these trends by focussing on three environmental mechanisms: ram pressure stripping by the intra-group medium, tidal stripping by the host halo, and satellite-satellite encounters. By tracking back in time the evolution of the HI-depleted satellites, we find that the most common cause of HI removal is satellite encounters. The timescale for HI removal is typically less than 0.5 Gyr. Tidal stripping occurs in halos of M200<10^{14} Msun within half r200, while the other processes act also in more massive halos, generally within r200. Conversely, we find that ram pressure stripping is the most common mechanism that disturbs the HI morphology of galaxies at redshift z=0. This implies that HI removal due to satellite-satellite interactions occurs on shorter timescales than the other processes.
Ly$alpha$-emitting galaxies (LAEs) are easily detectable in the high-redshift Universe and are potentially efficient tracers of large scale structure at early epochs, as long as their observed properties do not strongly depend on environment. We investigate the luminosity and equivalent width functions of LAEs in the overdense field of a protocluster at redshift $z simeq 3.78$. Using a large sample of LAEs (many spectroscopically confirmed), we find that the Ly$alpha$ luminosity distribution is well-represented by a Schechter (1976) function with $log(L^{ast}/{rm erg s^{-1}}) = 43.26^{+0.20}_{-0.22}$ and $log(phi^{ast}/{rm Mpc^{-3}})=-3.40^{+0.03}_{-0.04}$ with $alpha=-1.5$. Fitting the equivalent width distribution as an exponential, we find a scale factor of $omega=79^{+15}_{-15}$ Angstroms. We also measured the Ly$alpha$ luminosity and equivalent width functions using the subset of LAEs lying within the densest cores of the protocluster, finding similar values for $L^*$ and $omega$. Hence, despite having a mean overdensity more than 2$times$ that of the general field, the shape of the Ly$alpha$ luminosity function and equivalent width distributions in the protocluster region are comparable to those measured in the field LAE population by other studies at similar redshift. While the observed Ly$alpha$ luminosities and equivalent widths show correlations with the UV continuum luminosity in this LAE sample, we find that these are likely due to selection biases and are consistent with no intrinsic correlations within the sample. This protocluster sample supports the strong evolutionary trend observed in the Ly$alpha$ escape fraction and suggest that lower redshift LAEs can be on average significantly more dusty that their counterparts at higher redshift.
58 - S. Brough 2005
We measure the Petrosian structural properties of 33 brightest cluster galaxies (BCGs) at redshifts z<0.1 in X-ray selected clusters with a wide range of X-ray luminosities. We find that some BCGs show distinct signatures in their Petrosian profiles, likely to be due to cD haloes. We also find that BCGs in high X-ray luminosity clusters have shallower surface brightness profiles than those in low X-ray luminosity clusters. This suggests that the BCGs in high X-ray luminosity clusters have undergone up to twice as many equal-mass mergers in their past as those in low X-ray luminosity clusters. This is qualitatively consistent with the predictions of hierarchical structure formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا