We present a coupled-wire construction of a model with chiral fracton topological order. The model combines the known construction of $ u=1/m$ Laughlin fractional quantum Hall states with a planar p-string condensation mechanism. The bulk of the model supports gapped immobile fracton excitations that generate a hierarchy of mobile composite excitations. Open boundaries of the model are chiral and gapless, and can be used to demonstrate a fractional quantized Hall conductance where fracton composites act as charge carriers in the bulk. The planar p-string mechanism used to construct and analyze the model generalizes to a wide class of models including those based on layers supporting non-Abelian topological order. We describe this generalization and additionally provide concrete lattice-model realizations of the mechanism.