Do you want to publish a course? Click here

Attribution Preservation in Network Compression for Reliable Network Interpretation

69   0   0.0 ( 0 )
 Added by Geondo Park
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Neural networks embedded in safety-sensitive applications such as self-driving cars and wearable health monitors rely on two important techniques: input attribution for hindsight analysis and network compression to reduce its size for edge-computing. In this paper, we show that these seemingly unrelated techniques conflict with each other as network compression deforms the produced attributions, which could lead to dire consequences for mission-critical applications. This phenomenon arises due to the fact that conventional network compression methods only preserve the predictions of the network while ignoring the quality of the attributions. To combat the attribution inconsistency problem, we present a framework that can preserve the attributions while compressing a network. By employing the Weighted Collapsed Attribution Matching regularizer, we match the attribution maps of the network being compressed to its pre-compression former self. We demonstrate the effectiveness of our algorithm both quantitatively and qualitatively on diverse compression methods.



rate research

Read More

142 - Sheng Lin , Wei Jiang , Wei Wang 2021
Compressing Deep Neural Network (DNN) models to alleviate the storage and computation requirements is essential for practical applications, especially for resource limited devices. Although capable of reducing a reasonable amount of model parameters, previous unstructured or structured weight pruning methods can hardly truly accelerate inference, either due to the poor hardware compatibility of the unstructured sparsity or due to the low sparse rate of the structurally pruned network. Aiming at reducing both storage and computation, as well as preserving the original task performance, we propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration. Weight coefficients of a selected micro-structured block are unified to reduce the storage and computation of the block without changing the neuron connections, which turns to a micro-structured pruning special case when all unified coefficients are set to zero, where neuron connections (hence storage and computation) are completely removed. In addition, we developed an effective training framework based on the alternating direction method of multipliers (ADMM), which converts our complex constrained optimization into separately solvable subproblems. Through iteratively optimizing the subproblems, the desired micro-structure can be ensured with high compression ratio and low performance degradation. We extensively evaluated our method using a variety of benchmark models and datasets for different applications. Experimental results demonstrate state-of-the-art performance.
Deep neural networks (DNNs) have become the state-of-the-art technique for machine learning tasks in various applications. However, due to their size and the computational complexity, large DNNs are not readily deployable on edge devices in real-time. To manage complexity and accelerate computation, network compression techniques based on pruning and quantization have been proposed and shown to be effective in reducing network size. However, such network compression can result in irregular matrix structures that are mismatched with modern hardware-accelerated platforms, such as graphics processing units (GPUs) designed to perform the DNN matrix multiplications in a structured (block-based) way. We propose MPDCompress, a DNN compression algorithm based on matrix permutation decomposition via random mask generation. In-training application of the masks molds the synaptic weight connection matrix to a sub-graph separation format. Aided by the random permutations, a hardware-desirable block matrix is generated, allowing for a more efficient implementation and compression of the network. To show versatility, we empirically verify MPDCompress on several network models, compression rates, and image datasets. On the LeNet 300-100 model (MNIST dataset), Deep MNIST, and CIFAR10, we achieve 10 X network compression with less than 1% accuracy loss compared to non-compressed accuracy performance. On AlexNet for the full ImageNet ILSVRC-2012 dataset, we achieve 8 X network compression with less than 1% accuracy loss, with top-5 and top-1 accuracies of 79.6% and 56.4%, respectively. Finally, we observe that the algorithm can offer inference speedups across various hardware platforms, with 4 X faster operation achieved on several mobile GPUs.
This paper presents a novel network compression framework Kernel Quantization (KQ), targeting to efficiently convert any pre-trained full-precision convolutional neural network (CNN) model into a low-precision version without significant performance loss. Unlike existing methods struggling with weight bit-length, KQ has the potential in improving the compression ratio by considering the convolution kernel as the quantization unit. Inspired by the evolution from weight pruning to filter pruning, we propose to quantize in both kernel and weight level. Instead of representing each weight parameter with a low-bit index, we learn a kernel codebook and replace all kernels in the convolution layer with corresponding low-bit indexes. Thus, KQ can represent the weight tensor in the convolution layer with low-bit indexes and a kernel codebook with limited size, which enables KQ to achieve significant compression ratio. Then, we conduct a 6-bit parameter quantization on the kernel codebook to further reduce redundancy. Extensive experiments on the ImageNet classification task prove that KQ needs 1.05 and 1.62 bits on average in VGG and ResNet18, respectively, to represent each parameter in the convolution layer and achieves the state-of-the-art compression ratio with little accuracy loss.
163 - Huan Wang , Can Qin , Yue Bai 2021
Several recent works [40, 24] observed an interesting phenomenon in neural network pruning: A larger finetuning learning rate can improve the final performance significantly. Unfortunately, the reason behind it remains elusive up to date. This paper is meant to explain it through the lens of dynamical isometry [42]. Specifically, we examine neural network pruning from an unusual perspective: pruning as initialization for finetuning, and ask whether the inherited weights serve as a good initialization for the finetuning? The insights from dynamical isometry suggest a negative answer. Despite its critical role, this issue has not been well-recognized by the community so far. In this paper, we will show the understanding of this problem is very important -- on top of explaining the aforementioned mystery about the larger finetuning rate, it also unveils the mystery about the value of pruning [5, 30]. Besides a clearer theoretical understanding of pruning, resolving the problem can also bring us considerable performance benefits in practice.
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent and thus has a slow convergence. In addition, softmax, as a decision layer, may ignore the distribution information of the data during classification. Aiming to tackle the referred problems, we propose a novel manifold neural network based on non-gradient optimization, i.e., the closed-form solutions. Considering that the activation function is generally invertible, we reconstruct the network via forward ridge regression and low rank backward approximation, which achieve the rapid convergence. Moreover, by unifying the flexible Stiefel manifold and adaptive support vector machine, we devise the novel decision layer which efficiently fits the manifold structure of the data and label information. Consequently, a jointly non-gradient optimization method is designed to generate the network with closed-form results. Eventually, extensive experiments validate the superior performance of the model.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا