Do you want to publish a course? Click here

Hubble parameter estimation via dark sirens with the LISA-Taiji network

127   0   0.0 ( 0 )
 Added by Bin Hu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Hubble parameter is one of the central parameters in modern cosmology, which describes the present expansion rate of the universe. Their values inferred from the late-time observations are systematically higher than those from the early-time measurements by about $10%$. To come to a robust conclusion, independent probes with accuracy at percent levels are crucial. Gravitational waves from compact binary coalescence events can be formulated into the standard siren approach to provide an independent Hubble parameter measurement. The future space-borne gravitational wave observatory network, such as the LISA-Taiji network, will be able to measure the gravitational wave signals in the Millihertz bands with unprecedented accuracy. By including several statistical and instrumental noises, we show that within 5 years operation time, the LISA-Taiji network is able to constrain the Hubble parameter within $1%$ accuracy, and possibly beats the scatters down to $0.5%$ or even better.



rate research

Read More

LISA and Taiji are expected to form a space-based gravitational-wave (GW) detection network in the future. In this work, we make a forecast for the cosmological parameter estimation with the standard siren observation from the LISA-Taiji network. We simulate the standard siren data based on a scenario with configuration angle of $40^{circ}$ between LISA and Taiji. Three models for the population of massive black hole binary (MBHB), i.e., pop III, Q3d, and Q3nod, are considered to predict the events of MBHB mergers. We find that, based on the LISA-Taiji network, the number of electromagnetic (EM) counterparts detected is almost doubled compared with the case of single Taiji mission. Therefore, the LISA-Taiji networks standard siren observation could provide much tighter constraints on cosmological parameters. For example, solely using the standard sirens from the LISA-Taiji network, the constraint precision of $H_0$ could reach $1.3%$. Moreover, combined with the CMB data, the GW-EM observation based on the LISA-Taiji network could also tightly constrain the equation of state of dark energy, e.g., the constraint precision of $w$ reaches about $4%$, which is comparable with the result of CMB+BAO+SN. It is concluded that the GW standard sirens from the LISA-Taiji network will become a useful cosmological probe in understanding the nature of dark energy in the future.
Quasars have recently been used as an absolute distance indicator, extending the Hubble diagram to high redshift to reveal a deviation from the expansion history predicted for the standard, $Lambda$CDM cosmology. Here we show that the Laser Interferometer Space Antenna (LISA) will efficiently test this claim with standard sirens at high redshift, defined by the coincident gravitational wave (GW) and electromagnetic (EM) observations of the merger of massive black hole binaries (MBHBs). Assuming a fiducial $Lambda$CDM cosmology for generating mock standard siren datasets, the evidence for the $Lambda$CDM model with respect to an alternative model inferred from quasar data is investigated. By simulating many realizations of possible future LISA observations, we find that for $50%$ of these realizations (median result) 4 MBHB standard siren measurements will suffice to strongly differentiate between the two models, while 14 standard sirens will yield a similar result in $95%$ of the realizations. In addition, we investigate the measurement precision of cosmological parameters as a function of the number of observed LISA MBHB standard sirens, finding that 15 events will on average achieve a relative precision of 5% for $H_0$, reducing to 3% and 2% with 25 and 40 events, respectively. Our investigation clearly highlights the potential of LISA as a cosmological probe able to accurately map the expansion of the universe at $zgtrsim 2$, and as a tool to cross-check and cross-validate cosmological EM measurements with complementary GW observations.
We present a detailed study of the methodology for correlating `dark sirens (compact binaries coalescences without electromagnetic counterpart) with galaxy catalogs. We propose several improvements on the current state of the art, and we apply them to the GWTC-2 catalog of LIGO/Virgo gravitational wave (GW) detections, and the GLADE galaxy catalog, performing a detailed study of several sources of systematic errors that, with the expected increase in statistics, will eventually become the dominant limitation. We provide a measurement of $H_0$ from dark sirens alone, finding as the best result $H_0=67.3^{+27.6}_{-17.9},,{rm km}, {rm s}^{-1}, {rm Mpc}^{-1}$ ($68%$ c.l.) which is, currently, the most stringent constraint obtained using only dark sirens. Combining dark sirens with the counterpart for GW170817 we find $H_0= 72.2^{+13.9}_{-7.5} ,{rm km}, {rm s}^{-1}, {rm Mpc}^{-1}$. We also study modified GW propagation, which is a smoking gun of dark energy and modifications of gravity at cosmological scales, and we show that current observations of dark sirens already start to provide interesting limits. From dark sirens alone, our best result for the parameter $Xi_0$ that measures deviations from GR (with $Xi_0=1$ in GR) is $Xi_0=2.1^{+3.2}_{-1.2}$. We finally discuss limits on modified GW propagation under the tentative identification of the flare ZTF19abanrhr as the electromagnetic counterpart of the binary black hole coalescence GW190521, in which case our most stringent result is $Xi_0=1.8^{+0.9}_{-0.6}$. We release the publicly available code $tt{DarkSirensStat}$, which is available under open source license at url{https://github.com/CosmoStatGW/DarkSirensStat}.
120 - Gang Wang , Wen-Biao Han 2021
Two polarization modes of gravitational wave are derived from the general relativity which are plus and cross modes. However, the alternative theories of gravity can yield the gravitational wave with up to six polarizations. Searching for the polarizations beyond plus and cross is an important test of general relativity. In principle, one space-borne detector, like LISA, could measure the gravitational wave polarizations from a long time observation with its orbital motion. With the comparable sensitivities, the joint LISA and TAIJI missions will improve the observations on the polarization predictions of theories beyond general relativity. In this work, a class of parameterized post-Einsteinian waveform is employed to describe the alternative polarizations, and six parameterized post-Einsteinian parameters quantifying from general relativity waveform are examined by using the LISA-TAIJI network. Our results show that the measurements on amplitudes of alternative polarizations from joint LISA-TAIJI observation could be improved by more than 10 times compared to LISA single mission in an optimal scenario.
In this paper, we present the application of a new method measuring Hubble parameter $H(z)$ by using the anisotropy of luminosity distance($d_{L}$) of the gravitational wave(GW) standard sirens of neutron star(NS) binary system. The method has never been put into practice so far due to the lack of the ability of detecting GW. However, LIGOs success in detecting GW of black hole(BH) binary system merger announced the potential possibility of this new method. We apply this method to several GW detecting projects, including Advanced LIGO(aLIGO), Einstein Telescope(ET) and DECIGO, and evaluate its constraint ability on cosmological parameters of $H(z)$. It turns out that the $H(z)$ by aLIGO and ET is of bad accuracy, while the $H(z)$ by DECIGO shows a good one. We simulate $H(z)$ data at every 0.1 redshift span using the error information of $H(z)$ by DECIGO, and put the mock data into the forecasting of cosmological parameters. Compared with the previous data and method, we get an obviously tighter constraint on cosmological parameters by mock data, and a concomitantly higher value of Figure of Merit(FoM, the reciprocal of the area enclosed by the $2sigma$ confidence region). For a 3-year-observation by standard sirens of DECIGO, the FoM value is as high as 170.82. If a 10-year-observation is launched, the FoM could reach 569.42. For comparison, the FoM of 38 actual observed $H(z)$ data(OHD) is 9.3. We also investigate the undulant universe, which shows a comparable improvement on the constraint of cosmological parameters. These improvement indicates that the new method has great potential in further cosmological constraints.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا