Do you want to publish a course? Click here

Tangent fields, intrinsic stationarity, and self-similarity (with a supplement on Matheron Theory)

50   0   0.0 ( 0 )
 Added by Stilian Stoev
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This paper studies the local structure of continuous random fields on $mathbb R^d$ taking values in a complete separable linear metric space ${mathbb V}$. Extending seminal work of Falconer, we show that the generalized $(1+k)$-th order increment tangent fields are self-similar and almost everywhere intrinsically stationary in the sense of Matheron. These results motivate the further study of the structure of ${mathbb V}$-valued intrinsic random functions of order $k$ (IRF$_k$, $k=0,1,cdots$). To this end, we focus on the special case where ${mathbb V}$ is a Hilbert space. Building on the work of Sasvari and Berschneider, we establish the spectral characterization of all second order ${mathbb V}$-valued IRF$_k$s, extending the classical Matheron theory. Using these results, we further characterize the class of Gaussian, operator self-similar ${mathbb V}$-valued IRF$_k$s, generalizing results of Dobrushin and Didier, Meerschaert and Pipiras, among others. These processes are the Hilbert-space-valu



rate research

Read More

Consider a $Ntimes n$ random matrix $Z_n=(Z^n_{j_1 j_2})$ where the individual entries are a realization of a properly rescaled stationary gaussian random field. The purpose of this article is to study the limiting empirical distribution of the eigenvalues of Gram random matrices such as $Z_n Z_n ^*$ and $(Z_n +A_n)(Z_n +A_n)^*$ where $A_n$ is a deterministic matrix with appropriate assumptions in the case where $nto infty$ and $frac Nn to c in (0,infty)$. The proof relies on related results for matrices with independent but not identically distributed entries and substantially differs from related works in the literature (Boutet de Monvel et al., Girko, etc.).
We consider Gaussian measures $mu, tilde{mu}$ on a separable Hilbert space, with fractional-order covariance operators $A^{-2beta}$ resp. $tilde{A}^{-2tilde{beta}}$, and derive necessary and sufficient conditions on $A, tilde{A}$ and $beta, tilde{beta} > 0$ for I. equivalence of the measures $mu$ and $tilde{mu}$, and II. uniform asymptotic optimality of linear predictions for $mu$ based on the misspecified measure $tilde{mu}$. These results hold, e.g., for Gaussian processes on compact metric spaces. As an important special case, we consider the class of generalized Whittle-Matern Gaussian random fields, where $A$ and $tilde{A}$ are elliptic second-order differential operators, formulated on a bounded Euclidean domain $mathcal{D}subsetmathbb{R}^d$ and augmented with homogeneous Dirichlet boundary conditions. Our outcomes explain why the predictive performances of stationary and non-stationary models in spatial statistics often are comparable, and provide a crucial first step in deriving consistency results for parameter estimation of generalized Whittle-Matern fields.
Let {(X_i,Y_i)}_{i=1}^n be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramer type moderate deviation theorem for the general self-normalized sum sum_{i=1}^n X_i/(sum_{i=1}^n Y_i^2)^{1/2}, which unifies and extends the classical Cramer (1938) theorem and the self-normalized Cramer type moderate deviation theorems by Jing, Shao and Wang (2003) as well as the further refined version by Wang (2011). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramer type moderate deviation theorems for one-dependent random variables, geometrically beta-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramer type moderate deviation theorems for self-normalized winsorized mean.
60 - Jingwei Liu 2019
The deleting items theorems of weak law of large numbers (WLLN),strong law of large numbers (SLLN) and central limit theorem (CLT) are derived by substituting partial sum of random variable sequence with deleting items partial sum. We address the background of deleting items limit theory of random variable sequence, discuss the classical limit theory of Chebyshev WLLN, Bernoulli WLLN and Khinchine WLLN with standard mathematical analytical technique, then develop the deleting items theorems of WLLN, SLLN and CLT based on convergence theorems and Slutskys theorem. Our theorems extend the classical limit theory of random variable sequence and provide the construction of some asymptotic bias estimators of sample expectation and variance.
In the context of stability of the extremes of a random variable X with respect to a positive integer valued random variable N we discuss the cases (i) X is exponential (ii) non-geometric laws for N (iii) identifying N for the stability of a given X and (iv) extending the notion to a discrete random variable X.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا