Having accurate gate generation is essential for precise control of a quantum system. The generated gate usually suffers from linear and nonlinear distortion. Previous works have demonstrated how to use a qubit to correct linear frequency distortions but have not commented on how to handle nonlinear distortions. This is an important issue as we show that nonlinear amplitude distortions from the RF electronics can affect Rabi pulses by as much as 10%. We present work that demonstrates how a transmon qubit can be used as a highly sensitive cryogenic detector to characterize these nonlinear amplitude distortions. We show that a correction can drive these errors down to <1% over a 700 MHz range. This correction technique provides a method to minimize the effects of signal distortions and can be easily applied to broadband control pulses to produce higher fidelity arbitrary quantum gates.
Real-time sensing of ultra-wideband radio-frequency signal with high frequency resolution is challenging, which is confined by the sampling rate of electronic analog-to-digital converter and the capability of digital signal processing. By combining quantum mechanics with compressed sensing, quantum compressed sensing is proposed for wideband radio-frequency signal frequency measurement. By using an electro-optical crystal as a sensor which modulates the wave function of the coherent photons with the signal to be measured. The frequency spectrum could be recovered by detecting the modulated sparse photons with a low time-jitter single-photon detector and a time-to-digital converter. More than 50 GHz real-time analysis bandwidth is demonstrated with the Fourier transform limit resolution. The further simulation shows it can be extended to more than 300 GHz with the present technologies.
Quantum sensing describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity. Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors, or atomic clocks. More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions and flux qubits. The field is expected to provide new opportunities - especially with regard to high sensitivity and precision - in applied physics and other areas of science. In this review, we provide an introduction to the basic principles, methods and concepts of quantum sensing from the viewpoint of the interested experimentalist.
We report the realization of coupling-independent, robust wireless sensing of fully-passive resistive sensors. PT-symmetric operation obviates sweeping, permitting real-time, single-point sensing. Self-oscillation is achieved through a fast-settling nonlinearity whose voltage amplitude is proportional to the sensors resistance. These advances markedly simplify the reader. A dual time-scale theoretical framework generalizes system analysis to arbitrary operating conditions and a correction strategy reduces errors due to detuning from PT-symmetric conditions by an order of magnitude.
A lot of attention has been paid to a quantum-sensing network for detecting magnetic fields in different positions. Recently, cryptographic quantum metrology was investigated where the information of the magnetic fields is transmitted in a secure way. However, sometimes, the positions where non-zero magnetic fields are generated could carry important information. Here, we propose an anonymous quantum sensor where an information of positions having non-zero magnetic fields is hidden after measuring magnetic fields with a quantum-sensing network. Suppose that agents are located in different positions and they have quantum sensors. After the quantum sensors are entangled, the agents implement quantum sensing that provides a phase information if non-zero magnetic fields exist, and POVM measurement is performed on quantum sensors. Importantly, even if the outcomes of the POVM measurement is stolen by an eavesdropper, information of the positions with non-zero magnetic fields is still unknown for the eavesdropper in our protocol. In addition, we evaluate the sensitivity of our proposed quantum sensors by using Fisher information when there are at most two positions having non-zero magnetic fields. We show that the sensitivity is finite unless these two (non-zero) magnetic fields have exactly the same amplitude. Our results pave the way for new applications of quantum-sensing network.
We identify significant quantum many-body effects, robust to position fluctuations and strong dipole--dipole interactions, in the forward light scattering from planar arrays and uniform-density disks of cold atoms, by comparing stochastic electrodynamics simulations of a quantum master equation and of a semiclassical model that neglects quantum fluctuations. Quantum effects are pronounced at high atomic densities, light close to saturation intensity, and around subradiant resonances. We show that such conditions also maximize spin--spin correlations and entanglement of formation for the atoms, revealing the microscopic origin of light-induced quantum effects. In several regimes of interest, an enhanced semiclassical model with a single-atom quantum description reproduces light transmission remarkably well, and permits analysis of otherwise numerically inaccessible large ensembles, in which we observe collective many-body analogues of resonance power broadening, vacuum Rabi splitting, and significant suppression in cooperative reflection from atomic arrays.