We consider minimum-cardinality Manhattan connected sets with arbitrary demands: Given a collection of points $P$ in the plane, together with a subset of pairs of points in $P$ (which we call demands), find a minimum-cardinality superset of $P$ such that every demand pair is connected by a path whose length is the $ell_1$-distance of the pair. This problem is a variant of three well-studied problems that have arisen in computational geometry, data structures, and network design: (i) It is a node-cost variant of the classical Manhattan network problem, (ii) it is an extension of the binary search tree problem to arbitrary demands, and (iii) it is a special case of the directed Steiner forest problem. Since the problem inherits basic structural properties from the context of binary search trees, an $O(log n)$-approximation is trivial. We show that the problem is NP-hard and present an $O(sqrt{log n})$-approximation algorithm. Moreover, we provide an $O(loglog n)$-approximation algorithm for complete bipartite demands as well as improved results for unit-disk demands and several generalizations. Our results crucially rely on a new lower bound on the optimal cost that could potentially be useful in the context of BSTs.