Corrections of order O(E^2_e/m^2_N), caused by weak magnetism and proton recoil, to the neutron lifetime and correlation coefficients of the neutron beta decay


Abstract in English

We calculate the contributions of weak magnetism and proton recoil of order O(E^2_e/m^2_N)~10^{-5}, i.e. to next-to-next-to-leading order in the large nucleon mass expansion, to the neutron lifetime and correlation coefficients of the neutron beta decay, where E_e and m_N are the electron energy and the nucleon mass, respectively. We analyze the electron-energy and angular distribution for the neutron beta decay with a polarized neutron, a polarized electron and an unpolarized proton. Together with Wilkinsons corrections (Nucl. Phys. A 377, 474 (1982) and radiative corrections of order O(alpha E_e/m_N) ~ 10^{-5} (Phys. Rev. D 99, 093006 (2019)), calculated as next--to--leading order corrections in the large nucleon mass $m_N$ expansion to Sirlins corrections of order O(alpha/pi) (Phys. Rev. 164, 1767 (1967)), the corrections of order O(E^2_e/m^2_N) ~ 10^{-5} provide an improved level of precision of the theoretical background of the neutron beta decay, calculated in the Standard Model, for experimental searches of contributions of interactions beyond the Standard Model.

Download