The stratified disk wind of MCG-03-58-007


Abstract in English

Past Suzaku, XMM and NuSTAR observations of the nearby (z=0.0323) bright Seyfert 2 galaxy MCG-03-58-007 revealed the presence of two deep and blue-shifted Fe K-shell absorption line profiles. These could be explained with the presence of two phases of a highly ionized, high column density accretion disk wind outflowing with $v_{out1}sim -0.1c$ and $v_{out2}sim -0.2c$. Here we present two new observations of MCG-03-58-007: one was carried out in 2016 with Chandra and one in 2018 with Swift. Both caught MCG-03-58-007 in a brighter state ($F_{mathrm{2-10,keV}}sim 4times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$) confirming the presence of the fast disk wind. The multi-epoch observations of MCG-03-58-007 covering the period from 2010 to 2018 were then analysed. These data show that the lower velocity component outflowing with $v_{out1}sim -0.072pm 0.002c$ is persistent and detected in all the observations, although it is variable in column density in the range $N_rm{H}sim 3-8 times 10^{23}$cm$^{-2}$. In the 2016 Swift observation we detected again the second faster component outflowing with $v_{out2}sim -0.2c$, with a column density ($N_rm{H}=7.0^{+5.6}_{-4.1}times 10^{23}$cm$^{-2}$), similar to that seen during the Suzaku observation. However during the Chandra observation two years earlier, this zone was not present ($N_rm{H}<1.5times 10^{23}$cm$^{-2}$), suggesting that this faster zone is intermittent. Overall the multi-epochs observations show that the disk wind in MCG-03-58-007 is not only powerful, but also extremely variable, hence placing MCG-03-58-007 among unique disk winds such as the one seen in the famous QSO PDS456. One of the main results of this investigation is the consideration that these winds could be extremely variable, sometime appearing and sometime disappearing; thus to reach solid and firm conclusions about their energetics multiple observations are mandatory.

Download