Do you want to publish a course? Click here

Federated Learning From Big Data Over Networks

117   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper formulates and studies a novel algorithm for federated learning from large collections of local datasets. This algorithm capitalizes on an intrinsic network structure that relates the local datasets via an undirected empirical graph. We model such big data over networks using a networked linear regression model. Each local dataset has individual regression weights. The weights of close-knit sub-collections of local datasets are enforced to deviate only little. This lends naturally to a network Lasso problem which we solve using a primal-dual method. We obtain a distributed federated learning algorithm via a message passing implementation of this primal-dual method. We provide a detailed analysis of the statistical and computational properties of the resulting federated learning algorithm.



rate research

Read More

Federated learning (FL) has been proposed to allow collaborative training of machine learning (ML) models among multiple parties where each party can keep its data private. In this paradigm, only model updates, such as model weights or gradients, are shared. Many existing approaches have focused on horizontal FL, where each party has the entire feature set and labels in the training data set. However, many real scenarios follow a vertically-partitioned FL setup, where a complete feature set is formed only when all the datasets from the parties are combined, and the labels are only available to a single party. Privacy-preserving vertical FL is challenging because complete sets of labels and features are not owned by one entity. Existing approaches for vertical FL require multiple peer-to-peer communications among parties, leading to lengthy training times, and are restricted to (approximated) linear models and just two parties. To close this gap, we propose FedV, a framework for secure gradient computation in vertical settings for several widely used ML models such as linear models, logistic regression, and support vector machines. FedV removes the need for peer-to-peer communication among parties by using functional encryption schemes; this allows FedV to achieve faster training times. It also works for larger and changing sets of parties. We empirically demonstrate the applicability for multiple types of ML models and show a reduction of 10%-70% of training time and 80% to 90% in data transfer with respect to the state-of-the-art approaches.
There is an increasing interest in a fast-growing machine learning technique called Federated Learning, in which the model training is distributed over mobile user equipments (UEs), exploiting UEs local computation and training data. Despite its advantages in data privacy-preserving, Federated Learning (FL) still has challenges in heterogeneity across UEs data and physical resources. We first propose a FL algorithm which can handle the heterogeneous UEs data challenge without further assumptions except strongly convex and smooth loss functions. We provide the convergence rate characterizing the trade-off between local computation rounds of UE to update its local model and global communication rounds to update the FL global model. We then employ the proposed FL algorithm in wireless networks as a resource allocation optimization problem that captures the trade-off between the FL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FL is non-convex, we exploit this problems structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights to problem design. Finally, we illustrate the theoretical analysis for the new algorithm with Tensorflow experiments and extensive numerical results for the wireless resource allocation sub-problems. The experiment results not only verify the theoretical convergence but also show that our proposed algorithm outperforms the vanilla FedAvg algorithm in terms of convergence rate and testing accuracy.
In federated learning (FL), reducing the communication overhead is one of the most critical challenges since the parameter server and the mobile devices share the training parameters over wireless links. With such consideration, we adopt the idea of SignSGD in which only the signs of the gradients are exchanged. Moreover, most of the existing works assume Channel State Information (CSI) available at both the mobile devices and the parameter server, and thus the mobile devices can adopt fixed transmission rates dictated by the channel capacity. In this work, only the parameter server side CSI is assumed, and channel capacity with outage is considered. In this case, an essential problem for the mobile devices is to select appropriate local processing and communication parameters (including the transmission rates) to achieve a desired balance between the overall learning performance and their energy consumption. Two optimization problems are formulated and solved, which optimize the learning performance given the energy consumption requirement, and vice versa. Furthermore, considering that the data may be distributed across the mobile devices in a highly uneven fashion in FL, a stochastic sign-based algorithm is proposed. Extensive simulations are performed to demonstrate the effectiveness of the proposed methods.
Localization and tracking of objects using data-driven methods is a popular topic due to the complexity in characterizing the physics of wireless channel propagation models. In these modeling approaches, data needs to be gathered to accurately train models, at the same time that users privacy is maintained. An appealing scheme to cooperatively achieve these goals is known as Federated Learning (FL). A challenge in FL schemes is the presence of non-independent and identically distributed (non-IID) data, caused by unevenly exploration of different areas. In this paper, we consider the use of recent FL schemes to train a set of personalized models that are then optimally fused through Bayesian rules, which makes it appropriate in the context of indoor localization.
Federated learning has become increasingly important for modern machine learning, especially for data privacy-sensitive scenarios. Existing federated learning mostly adopts the central server-based architecture or centralized architecture. However, in many social network scenarios, centralized federated learning is not applicable (e.g., a central agent or server connecting all users may not exist, or the communication cost to the central server is not affordable). In this paper, we consider a generic setting: 1) the central server may not exist, and 2) the social network is unidirectional or of single-sided trust (i.e., user A trusts user B but user B may not trust user A). We propose a central server free federated learning algorithm, named Online Push-Sum (OPS) method, to handle this challenging but generic scenario. A rigorous regret analysis is also provided, which shows very interesting results on how users can benefit from communication with trusted users in the federated learning scenario. This work builds upon the fundamental algorithm framework and theoretical guarantees for federated learning in the generic social network scenario.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا