Do you want to publish a course? Click here

Combining Label Propagation and Simple Models Out-performs Graph Neural Networks

120   0   0.0 ( 0 )
 Added by Qian Huang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Graph Neural Networks (GNNs) are the predominant technique for learning over graphs. However, there is relatively little understanding of why GNNs are successful in practice and whether they are necessary for good performance. Here, we show that for many standard transductive node classification benchmarks, we can exceed or match the performance of state-of-the-art GNNs by combining shallow models that ignore the graph structure with two simple post-processing steps that exploit correlation in the label structure: (i) an error correlation that spreads residual errors in training data to correct errors in test data and (ii) a prediction correlation that smooths the predictions on the test data. We call this overall procedure Correct and Smooth (C&S), and the post-processing steps are implemented via simple modifications to standard label propagation techniques from early graph-based semi-supervised learning methods. Our approach exceeds or nearly matches the performance of state-of-the-art GNNs on a wide variety of benchmarks, with just a small fraction of the parameters and orders of magnitude faster runtime. For instance, we exceed the best known GNN performance on the OGB-Products dataset with 137 times fewer parameters and greater than 100 times less training time. The performance of our methods highlights how directly incorporating label information into the learning algorithm (as was done in traditional techniques) yields easy and substantial performance gains. We can also incorporate our techniques into big GNN models, providing modest gains. Our code for the OGB results is at https://github.com/Chillee/CorrectAndSmooth.

rate research

Read More

Graph neural networks (GNNs) achieve remarkable success in graph-based semi-supervised node classification, leveraging the information from neighboring nodes to improve the representation learning of target node. The success of GNNs at node classification depends on the assumption that connected nodes tend to have the same label. However, such an assumption does not always work, limiting the performance of GNNs at node classification. In this paper, we propose label-consistency based graph neural network(LC-GNN), leveraging node pairs unconnected but with the same labels to enlarge the receptive field of nodes in GNNs. Experiments on benchmark datasets demonstrate the proposed LC-GNN outperforms traditional GNNs in graph-based semi-supervised node classification.We further show the superiority of LC-GNN in sparse scenarios with only a handful of labeled nodes.
The automatic verification of document authorships is important in various settings. Researchers are for example judged and compared by the amount and impact of their publications and public figures are confronted by their posts on social media platforms. Therefore, it is important that authorship information in frequently used web services and platforms is correct. The question whether a given document is written by a given author is commonly referred to as authorship verification (AV). While AV is a widely investigated problem in general, only few works consider settings where the documents are short and written in a rather uniform style. This makes most approaches unpractical for online databases and knowledge graphs in the scholarly domain. Here, authorships of scientific publications have to be verified, often with just abstracts and titles available. To this point, we present our novel approach LG4AV which combines language models and graph neural networks for authorship verification. By directly feeding the available texts in a pre-trained transformer architecture, our model does not need any hand-crafted stylometric features that are not meaningful in scenarios where the writing style is, at least to some extent, standardized. By the incorporation of a graph neural network structure, our model can benefit from relations between authors that are meaningful with respect to the verification process. For example, scientific authors are more likely to write about topics that are addressed by their co-authors and twitter users tend to post about the same subjects as people they follow. We experimentally evaluate our model and study to which extent the inclusion of co-authorships enhances verification decisions in bibliometric environments.
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks such as node classification and link prediction. However, important unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs. In this paper, we study unsupervised training of GNN pooling in terms of their clustering capabilities. We start by drawing a connection between graph clustering and graph pooling: intuitively, a good graph clustering is what one would expect from a GNN pooling layer. Counterintuitively, we show that this is not true for state-of-the-art pooling methods, such as MinCut pooling. To address these deficiencies, we introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality, and show how it tackles recovery of the challenging clustering structure of real-world graphs. In order to clarify the regimes where existing methods fail, we carefully design a set of experiments on synthetic data which show that DMoN is able to jointly leverage the signal from the graph structure and node attributes. Similarly, on real-world data, we show that DMoN produces high quality clusters which correlate strongly with ground truth labels, achieving state-of-the-art results.
We propose interpretable graph neural networks for sampling and recovery of graph signals, respectively. To take informative measurements, we propose a new graph neural sampling module, which aims to select those vertices that maximally express their corresponding neighborhoods. Such expressiveness can be quantified by the mutual information between vertices features and neighborhoods features, which are estimated via a graph neural network. To reconstruct an original graph signal from the sampled measurements, we propose a graph neural recovery module based on the algorithm-unrolling technique. Compared to previous analytical sampling and recovery, the proposed methods are able to flexibly learn a variety of graph signal models from data by leveraging the learning ability of neural networks; compared to previous neural-network-based sampling and recovery, the proposed methods are designed through exploiting specific graph properties and provide interpretability. We further design a new multiscale graph neural network, which is a trainable multiscale graph filter bank and can handle various graph-related learning tasks. The multiscale network leverages the proposed graph neural sampling and recovery modules to achieve multiscale representations of a graph. In the experiments, we illustrate the effects of the proposed graph neural sampling and recovery modules and find that the modules can flexibly adapt to various graph structures and graph signals. In the task of active-sampling-based semi-supervised learning, the graph neural sampling module improves the classification accuracy over 10% in Cora dataset. We further validate the proposed multiscale graph neural network on several standard datasets for both vertex and graph classification. The results show that our method consistently improves the classification accuracies.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use graph sampling or layer-wise sampling techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine. The codes of GBP can be found at https://github.com/chennnM/GBP .

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا