No Arabic abstract
11 transient bright flashes were detected in Jupiters atmosphere using the UVS instrument on the Juno spacecraft. These bright flashes are only observed in a single spin of the spacecraft and their brightness decays exponentially with time, with a duration of ~1.4 ms. The spectra are dominated by H2 Lyman band emission and based on the level of atmospheric absorption, we estimate a source altitude of 260 km above the 1-bar level. Based on these characteristics, we suggest that these are observations of Transient Luminous Events (TLEs) in Jupiters upper atmosphere. In particular, we suggest that these are elves, sprites or sprite halos, three types of TLEs that occur in the Earths upper atmosphere in response to tropospheric lightning strikes. This is supported by visible light imaging, which shows cloud features typical of lightning source regions at the locations of several of the bright flashes. TLEs have previously only been observed on Earth, although theoretical and experimental work has predicted that they should also be present on Jupiter.
The UVS instrument on the Juno mission recorded transient bright emission from a point source in Jupiters atmosphere. The spectrum shows that the emission is consistent with a 9600-K blackbody located 225 km above the 1-bar level and the duration of the emission was between 17 ms and 150 s. These characteristics are consistent with a bolide in Jupiters atmosphere. Based on the energy emitted, we estimate that the impactor had a mass of 250-5000 kg, which corresponds to a diameter of 1-4 m. By considering all observations made with Juno UVS over the first 27 perijoves of the mission, we estimate an impact flux rate of 24,000 per year for impactors with masses greater than 250-5000 kg.
Plutos icy surface has changed colour and its atmosphere has swelled since its last closest approach to the Sun in 1989. The thin atmosphere is produced by evaporating ices, and so can also change rapidly, and in particular carbon monoxide should be present as an active thermostat. Here we report the discovery of gaseous CO via the 1.3mm wavelength J=2-1 rotational transition, and find that the line-centre signal is more than twice as bright as a tentative result obtained by Bockelee-Morvan et al. in 2000. Greater surface-ice evaporation over the last decade could explain this, or increased pressure could have caused the atmosphere to expand. The gas must be cold, with a narrow line-width consistent with temperatures around 50 K, as predicted for the very high atmosphere, and the line brightness implies that CO molecules extend up to approximately 3 Pluto radii above the surface. The upper atmosphere must have changed markedly over only a decade since the prior search, and more alterations could occur by the arrival of the New Horizons mission in 2015.
Recently, Nadir and Occultation for Mars Discovery (NOMAD) ultraviolet and visible spectrometer instrument on board the European Space Agencys ExoMars Trace Gas Orbiter (TGO) simultaneously measured the limb emission intensities for both [OI] 2972 and 5577 {AA} (green) emissions in the dayside of Martian upper atmosphere. We aim to explore the photochemistry of all these forbidden atomic oxygen emissions ([OI] 2972, 5577, 6300, 6464 {AA}) in the Martian daylight upper atmosphere and suitable conditions for the simultaneous detection of these emissions lines in the dayside visible spectra. A photochemical model is developed to study the production and loss processes of O(1S) and O(1D) by incorporating various chemical reactions of different O-bearing species in the upper atmosphere of Mars. By reducing Fox (2004) modelled neutral density profiles by a factor of 2, the calculated limb intensity profiles for [OI] 5577 and 2972 {AA} emissions are found to be consistent with the NOMAD-TGO observations. In this case, at altitudes below 120 km, our modelled limb intensity for [OI] 6300 {AA} emission is smaller by a factor 2 to 5 compared to that of NOMAD-TGO observation for [OI] 2972 {AA} emission, and above this distance it is comparable with the upper limit of the observation. We studied various parameters which can influence the limb intensities of these atomic oxygen forbidden emission lines. Our calculated limb intensity for [OI] 6300 {AA} emission, when the Mars is at near perihelion and for solar maximum condition, suggests that all these forbidden emissions should be observable in the NOMAD-TGO visible spectra taken on the dayside of Martian upper atmosphere. More simultaneous observations of forbidden atomic oxygen emission lines will help to understand the photochemical processes of oxygen-bearing species in the dayside Martian upper atmosphere.
Optical transmission spectroscopy provides crucial constraints on the reference pressure levels and scattering properties for hot Jupiter atmospheres. For certain planets, where alkali atoms are detected in the atmosphere, their line profiles could serve as a good probe to link upper and lower atmospheric layers. WASP-21b is a Saturn-mass hot Jupiter orbiting a thick disc star, with a low density and an equilibrium temperature of 1333 K, which makes it a good target for transmission spectroscopy. Here, we present a low-resolution transmission spectrum for WASP-21b based in one transit observed by the OSIRIS spectrograph at the 10.4 m Gran Telescopio Canarias (GTC), and a high-resolution transmission spectrum based in three transits observed by HARPS-N at Telescopio Nazinale Galileo (TNG) and HARPS at the ESO 3.6 m telescope. We performed spectral retrieval analysis on GTCs low-resolution transmission spectrum and report the detection of Na at a confidence level of $>$3.5-$sigma$. The Na line exhibits a broad line profile that can be attributed to pressure broadening, indicating a mostly clear planetary atmosphere. The spectrum shows a tentative excess absorption at the K D$_1$ line. Using HARPS-N and HARPS, we spectrally resolved the Na doublet transmission spectrum. An excess absorption at the Na doublet is detected during the transit, and shows a radial velocity shift consistent with the planet orbital motion. We proposed a metric to quantitatively distinguish hot Jupiters with relatively clear atmospheres from others, and WASP-21b has the largest metric value among all the characterized hot Jupiters. The detection of Na at both lower and upper atmosphere of WASP-21b reveals that it is an ideal target for future follow-up observations, providing the opportunity to understand the nature of its atmosphere across a wide range of pressure levels.
A collisional avalanche is set off by the breakup of a large planetesimal, releasing small unbound grains that enter a debris disc located further away from the star, triggering there a collisional chain reaction that can potentially create detectable transient structures. We explore this mechanism, using for the first time a code coupling dynamical and collisional evolutions, and investigate if avalanches could explain the short-term luminosity variations observed in some extremely bright discs. We consider two set-ups: a cold disc case, with a dust release at 10au and an outer disc extending from 50 to 120au, and a warm disc case with the release at 1au and a 5-12au outer disc. We find that avalanches could leave detectable structures on resolved images, for both cold and warm disc cases, in discs with optical depth $tau$ of a few $10^{-3}$, provided that large dust masses ($gtrsim$10$^{20}$-5$times$10$^{22}$g) are initially released. The integrated photometric excess due to an avalanche is limited, less than 10% for these released dust masses, peaking in the mid-IR and becoming insignificant beyond $sim$40-50$mu$m. Contrary to earlier studies, we do not obtain stronger avalanches when increasing $tau$ to higher values. Likewise, we do not observe a significant luminosity deficit, as compared to the pre-avalanche level, after the passage of the avalanche. These two results concur to make avalanches an unlikely explanation for the sharp luminosity drops observed in some extremely bright debris discs. The ideal configuration for observing an avalanche would be a two-belt structure, with an inner belt of fractional luminosity >10$^{-4}$ where breakups of massive planetesimals occur, and a more massive outer belt, with $tau$ of a few $10^{-3}$, into which the avalanche chain reaction develops and propagates.