Do you want to publish a course? Click here

On the percolative properties of the intersection of two independent interlacements

225   0   0.0 ( 0 )
 Added by Zijie Zhuang
 Publication date 2020
  fields Physics
and research's language is English
 Authors Zijie Zhuang




Ask ChatGPT about the research

We prove the existence of non-trivial phase transitions for the intersection of two independent random interlacements and the complement of the intersection. Some asymptotic results about the phase curves are also obtained. Moreover, we show that at least one of these two sets percolates in high dimensions.

rate research

Read More

We consider the random interlacements process with intensity $u$ on ${mathbb Z}^d$, $dge 5$ (call it $I^u$), built from a Poisson point process on the space of doubly infinite nearest neighbor trajectories on ${mathbb Z}^d$. For $kge 3$ we want to determine the minimal number of trajectories from the point process that is needed to link together $k$ points in $mathcal I^u$. Let $$n(k,d):=lceil frac d 2 (k-1) rceil - (k-2).$$ We prove that almost surely given any $k$ points $x_1,...,x_kin mathcal I^u$, there is a sequence ofof $n(k,d)$ trajectories $gamma^1,...,gamma^{n(k,d)}$ from the underlying Poisson point process such that the union of their traces $bigcup_{i=1}^{n(k,d)}tr(gamma^{i})$ is a connected set containing $x_1,...,x_k$. Moreover we show that this result is sharp, i.e. that a.s. one can find $x_1,...,x_k in I^u$ that cannot be linked together by $n(k,d)-1$ trajectories.
For a large class of amenable transient weighted graphs $G$, we prove that the sign clusters of the Gaussian free field on $G$ fall into a regime of strong supercriticality, in which two infinite sign clusters dominate (one for each sign), and finite sign clusters are necessarily tiny, with overwhelming probability. Examples of graphs belonging to this class include regular lattices like $mathbb{Z}^d$, for $d geqslant 3$, but also more intricate geometries, such as Cayley graphs of suitably growing (finitely generated) non-Abelian groups, and cases in which random walks exhibit anomalous diffusive behavior, for instance various fractal graphs. As a consequence, we also show that the vacant set of random interlacements on these objects, introduced by Sznitman in arXiv:0704.2560, and which is intimately linked to the free field, contains an infinite connected component at small intensities. In particular, this result settles an open problem from arXiv:1010.1490.
We prove the existence of the intersection local time for two independent, d -dimensional fractional Brownian motions with the same Hurst parameter H. Assume d greater or equal to 2, then the intersection local time exists if and only if Hd<2.
We introduce the model of two-dimensional continuous random interlacements, which is constructed using the Brownian trajectories conditioned on not hitting a fixed set (usually, a disk). This model yields the local picture of Wiener sausage on the torus around a late point. As such, it can be seen as a continuous analogue of discrete two-dimensional random interlacements [Comets, Popov, Vachkovskaia, 2016]. At the same time, one can view it as (restricted) Brownian loops through infinity. We establish a number of results analogous to these of [Comets, Popov, Vachkovskaia, 2016; Comets, Popov, 2016], as well as the results specific to the continuous case.
121 - Marek Biskup 2017
These lecture notes offer a gentle introduction to the two-dimensional Discrete Gaussian Free Field with particular attention paid to the scaling limits of the level sets at heights proportional to the absolute maximum. The bulk of the text is based on recent joint papers with O. Louidor and with J. Ding and S. Goswami. Still, new proofs of the tightness and distributional convergence of the centered DGFF maximum are presented that by-pass the use of the modified Branching Random Walk. The text contains a wealth of instructive exercises and a list of open questions and conjectures for future research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا