Do you want to publish a course? Click here

Hierarchical Neural Architecture Search for Deep Stereo Matching

182   0   0.0 ( 0 )
 Added by Xuelian Cheng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

To reduce the human efforts in neural network design, Neural Architecture Search (NAS) has been applied with remarkable success to various high-level vision tasks such as classification and semantic segmentation. The underlying idea for the NAS algorithm is straightforward, namely, to enable the network the ability to choose among a set of operations (e.g., convolution with different filter sizes), one is able to find an optimal architecture that is better adapted to the problem at hand. However, so far the success of NAS has not been enjoyed by low-level geometric vision tasks such as stereo matching. This is partly due to the fact that state-of-the-art deep stereo matching networks, designed by humans, are already sheer in size. Directly applying the NAS to such massive structures is computationally prohibitive based on the currently available mainstream computing resources. In this paper, we propose the first end-to-end hierarchical NAS framework for deep stereo matching by incorporating task-specific human knowledge into the neural architecture search framework. Specifically, following the gold standard pipeline for deep stereo matching (i.e., feature extraction -- feature volume construction and dense matching), we optimize the architectures of the entire pipeline jointly. Extensive experiments show that our searched network outperforms all state-of-the-art deep stereo matching architectures and is ranked at the top 1 accuracy on KITTI stereo 2012, 2015 and Middlebury benchmarks, as well as the top 1 on SceneFlow dataset with a substantial improvement on the size of the network and the speed of inference. The code is available at https://github.com/XuelianCheng/LEAStereo.



rate research

Read More

Recently, much attention has been spent on neural architecture search (NAS) approaches, which often outperform manually designed architectures on highlevel vision tasks. Inspired by this, we attempt to leverage NAS technique to automatically design efficient network architectures for low-level image restoration tasks. In this paper, we propose a memory-efficient hierarchical NAS HiNAS (HiNAS) and apply to two such tasks: image denoising and image super-resolution. HiNAS adopts gradient based search strategies and builds an flexible hierarchical search space, including inner search space and outer search space, which in charge of designing cell architectures and deciding cell widths, respectively. For inner search space, we propose layerwise architecture sharing strategy (LWAS), resulting in more flexible architectures and better performance. For outer search space, we propose cell sharing strategy to save memory, and considerably accelerate the search speed. The proposed HiNAS is both memory and computation efficient. With a single GTX1080Ti GPU, it takes only about 1 hour for searching for denoising network on BSD 500 and 3.5 hours for searching for the super-resolution structure on DIV2K. Experimental results show that the architectures found by HiNAS have fewer parameters and enjoy a faster inference speed, while achieving highly competitive performance compared with state-of-the-art methods.
We present a neural architecture search (NAS) technique to enhance the performance of unsupervised image de-noising, in-painting and super-resolution under the recently proposed Deep Image Prior (DIP). We show that evolutionary search can automatically optimize the encoder-decoder (E-D) structure and meta-parameters of the DIP network, which serves as a content-specific prior to regularize these single image restoration tasks. Our binary representation encodes the design space for an asymmetric E-D network that typically converges to yield a content-specific DIP within 10-20 generations using a population size of 500. The optimized architectures consistently improve upon the visual quality of classical DIP for a diverse range of photographic and artistic content.
This paper presents HITNet, a novel neural network architecture for real-time stereo matching. Contrary to many recent neural network approaches that operate on a full cost volume and rely on 3D convolutions, our approach does not explicitly build a volume and instead relies on a fast multi-resolution initialization step, differentiable 2D geometric propagation and warping mechanisms to infer disparity hypotheses. To achieve a high level of accuracy, our network not only geometrically reasons about disparities but also infers slanted plane hypotheses allowing to more accurately perform geometric warping and upsampling operations. Our architecture is inherently multi-resolution allowing the propagation of information across different levels. Multiple experiments prove the effectiveness of the proposed approach at a fraction of the computation required by state-of-the-art methods. At the time of writing, HITNet ranks 1st-3rd on all the metrics published on the ETH3D website for two view stereo, ranks 1st on most of the metrics among all the end-to-end learning approaches on Middlebury-v3, ranks 1st on the popular KITTI 2012 and 2015 benchmarks among the published methods faster than 100ms.
130 - Yuanzheng Ci , Chen Lin , Ming Sun 2020
The automation of neural architecture design has been a coveted alternative to human experts. Recent works have small search space, which is easier to optimize but has a limited upper bound of the optimal solution. Extra human design is needed for those methods to propose a more suitable space with respect to the specific task and algorithm capacity. To further enhance the degree of automation for neural architecture search, we present a Neural Search-space Evolution (NSE) scheme that iteratively amplifies the results from the previous effort by maintaining an optimized search space subset. This design minimizes the necessity of a well-designed search space. We further extend the flexibility of obtainable architectures by introducing a learnable multi-branch setting. By employing the proposed method, a consistent performance gain is achieved during a progressive search over upcoming search spaces. We achieve 77.3% top-1 retrain accuracy on ImageNet with 333M FLOPs, which yielded a state-of-the-art performance among previous auto-generated architectures that do not involve knowledge distillation or weight pruning. When the latency constraint is adopted, our result also performs better than the previous best-performing mobile models with a 77.9% Top-1 retrain accuracy.
133 - Yiwu Yao , Yuhua Cheng 2019
Fully parallel architecture at disparity-level for efficient semi-global matching (SGM) with refined rank method is presented. The improved SGM algorithm is implemented with the non-parametric unified rank model which is the combination of Rank filter/AD and Rank SAD. Rank SAD is a novel definition by introducing the constraints of local image structure into the rank method. As a result, the unified rank model with Rank SAD can make up for the defects of Rank filter/AD. Experimental results show both excellent subjective quality and objective performance of the refined SGM algorithm. The fully parallel construction for hardware implementation of SGM is architected with reasonable strategies at disparity-level. The parallelism of the data-stream allows proper throughput for specific applications with acceptable maximum frequency. The results of RTL emulation and synthesis ensure that the proposed parallel architecture is suitable for VLSI implementation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا