Do you want to publish a course? Click here

Calculating the linear critical gradient for the ion-temperature-gradient mode in magnetically confined plasmas

107   0   0.0 ( 0 )
 Added by Gareth Roberg-Clark
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A first-principles method to calculate the critical temperature gradient for the onset of the ion-temperature-gradient mode (ITG) in linear gyrokinetics is presented. We find that conventional notions of the connection length previously invoked in tokamak research should be revised and replaced by a generalized correlation length to explain this onset in stellarators. Simple numerical experiments and gyrokinetic theory show that localized spikes in shear, a hallmark of stellarator geometry, are generally insufficient to constrain the parallel correlation length of the mode. ITG modes that localize within bad drift curvature wells that have a critical gradient set by peak drift curvature are also observed. A case study of nearly helical stellarators of increasing field period demonstrates that the critical gradient can indeed be controlled by manipulating magnetic geometry, but underscores the need for a general framework to evaluate the critical gradient. We conclude that average curvature and global shear set the correlation length of resonant ITG modes near the absolute critical gradient, the physics of which is included through direct solution of the gyrokinetic equation. Our method, which handles general geometry and is more efficient than conventional gyrokinetic solvers, could be applied to future studies of stellarator ITG turbulence optimization.



rate research

Read More

The electromagnetic theory of the strongly driven ion-temperature-gradient (ITG) instability in magnetically confined toroidal plasmas is developed. Stabilizing and destabilizing effects are identified, and a critical $beta_{e}$ (the ratio of the electron to magnetic pressure) for stabilization of the toroidal branch of the mode is calculated for magnetic equilibria independent of the coordinate along the magnetic field. Its scaling is $beta_{e}sim L_{Te}/R,$ where $L_{Te}$ is the characteristic electron temperature gradient length, and $R$ the major radius of the torus. We conjecture that a fast particle population can cause a similar stabilization due to its contribution to the equilibrium pressure gradient. For sheared equilibria, the boundary of marginal stability of the electromagnetic correction to the electrostatic mode is also given. For a general magnetic equilibrium, we find a critical length (for electromagnetic stabilization) of the extent of the unfavourable curvature along the magnetic field. This is a decreasing function of the local magnetic shear.
115 - M. Barnes , F. I. Parra , 2011
Scaling laws for ion temperature gradient driven turbulence in magnetized toroidal plasmas are derived and compared with direct numerical simulations. Predicted dependences of turbulence fluctuation amplitudes, spatial scales, and resulting heat fluxes on temperature gradient and magnetic field line pitch are found to agree with numerical results in both the driving and inertial ranges. Evidence is provided to support the critical balance conjecture that parallel streaming and nonlinear perpendicular decorrelation times are comparable at all spatial scales, leading to a scaling relationship between parallel and perpendicular spatial scales. This indicates that even strongly magnetized plasma turbulence is intrinsically three-dimensional.
We investigate the linear theory of the ion-temperature-gradient (ITG) mode, with the goal of developing a general understanding that may be applied to stellarators. We highlight the Wendelstein 7X (W7-X) device. Simple fluid and kinetic models that follow closely from existing literature are reviewed and two new first-principle models are presented and compared with results from direct numerical simulation. One model investigates the effect of regions of strong localized shear, which are generic to stellarator equilibria. These shear spikes are found to have a potentially significant stabilizing affect on the mode; however, the effect is strongest at short wavelengths perpendicular to the magnetic field, and it is found to be significant only for the fastest growing modes in W7-X. A second model investigates the long-wavelength limit for the case of negligible global magnetic shear. The analytic calculation reveals that the effect of the curvature drive enters at second order in the drift frequency, confirming conventional wisdom that the ITG mode is slab-like at long wavelengths. Using flux tube simulations of a zero-shear W7-X configuration, we observe a close relationship to an axisymmetric configuration at a similar parameter point. It is concluded that scale lengths of the equilibrium gradients constitute a good parameter space to characterize the ITG mode. Thus, to optimize the magnetic geometry for ITG mode stability, it may be fruitful to focus on local parameters, such as the magnitude of bad curvature, connection length, and local shear at locations of bad curvature (where the ITG mode amplitude peaks).
Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.
151 - J.Anderson , H. Nordman , R. Singh 2009
In the present work the zonal flow (ZF) growth rate in toroidal ion-temperature-gradient (ITG) mode turbulence including the effects of elongation is studied analytically. The scaling of the ZF growth with plasma parameters is examined for typical tokamak parameter values. The physical model used for the toroidal ITG driven mode is based on the ion continuity and ion temperature equations whereas the ZF evolution is described by the vorticity equation. The results indicate that a large ZF growth is found close to marginal stability and for peaked density profiles and these effects may be enhanced by elongation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا