Do you want to publish a course? Click here

TPLinker: Single-stage Joint Extraction of Entities and Relations Through Token Pair Linking

111   0   0.0 ( 0 )
 Added by Yucheng Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Extracting entities and relations from unstructured text has attracted increasing attention in recent years but remains challenging, due to the intrinsic difficulty in identifying overlapping relations with shared entities. Prior works show that joint learning can result in a noticeable performance gain. However, they usually involve sequential interrelated steps and suffer from the problem of exposure bias. At training time, they predict with the ground truth conditions while at inference it has to make extraction from scratch. This discrepancy leads to error accumulation. To mitigate the issue, we propose in this paper a one-stage joint extraction model, namely, TPLinker, which is capable of discovering overlapping relations sharing one or both entities while immune from the exposure bias. TPLinker formulates joint extraction as a token pair linking problem and introduces a novel handshaking tagging scheme that aligns the boundary tokens of entity pairs under each relation type. Experiment results show that TPLinker performs significantly better on overlapping and multiple relation extraction, and achieves state-of-the-art performance on two public datasets.



rate research

Read More

114 - Xiang Ren , Zeqiu Wu , Wenqi He 2016
Extracting entities and relations for types of interest from text is important for understanding massive text corpora. Traditionally, systems of entity relation extraction have relied on human-annotated corpora for training and adopted an incremental pipeline. Such systems require additional human expertise to be ported to a new domain, and are vulnerable to errors cascading down the pipeline. In this paper, we investigate joint extraction of typed entities and relations with labeled data heuristically obtained from knowledge bases (i.e., distant supervision). As our algorithm for type labeling via distant supervision is context-agnostic, noisy training data poses unique challenges for the task. We propose a novel domain-independent framework, called CoType, that runs a data-driven text segmentation algorithm to extract entity mentions, and jointly embeds entity mentions, relation mentions, text features and type labels into two low-dimensional spaces (for entity and relation mentions respectively), where, in each space, objects whose types are close will also have similar representations. CoType, then using these learned embeddings, estimates the types of test (unlinkable) mentions. We formulate a joint optimization problem to learn embeddings from text corpora and knowledge bases, adopting a novel partial-label loss function for noisy labeled data and introducing an object translation function to capture the cross-constraints of entities and relations on each other. Experiments on three public datasets demonstrate the effectiveness of CoType across different domains (e.g., news, biomedical), with an average of 25% improvement in F1 score compared to the next best method.
Joint extraction of entities and relations aims to detect entity pairs along with their relations using a single model. Prior work typically solves this task in the extract-then-classify or unified labeling manner. However, these methods either suffer from the redundant entity pairs, or ignore the important inner structure in the process of extracting entities and relations. To address these limitations, in this paper, we first decompose the joint extraction task into two interrelated subtasks, namely HE extraction and TER extraction. The former subtask is to distinguish all head-entities that may be involved with target relations, and the latter is to identify corresponding tail-entities and relations for each extracted head-entity. Next, these two subtasks are further deconstructed into several sequence labeling problems based on our proposed span-based tagging scheme, which are conveniently solved by a hierarchical boundary tagger and a multi-span decoding algorithm. Owing to the reasonable decomposition strategy, our model can fully capture the semantic interdependency between different steps, as well as reduce noise from irrelevant entity pairs. Experimental results show that our method outperforms previous work by 5.2%, 5.9% and 21.5% (F1 score), achieving a new state-of-the-art on three public datasets
83 - Xukun Luo , Weijie Liu , Meng Ma 2020
Joint extraction refers to extracting triples, composed of entities and relations, simultaneously from the text with a single model. However, most existing methods fail to extract all triples accurately and efficiently from sentences with overlapping issue, i.e., the same entity is included in multiple triples. In this paper, we propose a novel scheme called Bidirectional Tree Tagging (BiTT) to label overlapping triples in text. In BiTT, the triples with the same relation category in a sentence are especially represented as two binary trees, each of which is converted into a word-level tags sequence to label each word. Based on BiTT scheme, we develop an end-to-end extraction framework to predict the BiTT tags and further extract triples efficiently. We adopt the Bi-LSTM and the BERT as the encoder in our framework respectively, and obtain promising results in public English as well as Chinese datasets.
In entity linking, mentions of named entities in raw text are disambiguated against a knowledge base (KB). This work focuses on linking to unseen KBs that do not have training data and whose schema is unknown during training. Our approach relies on methods to flexibly convert entities from arbitrary KBs with several attribute-value pairs into flat strings, which we use in conjunction with state-of-the-art models for zero-shot linking. To improve the generalization of our model, we use two regularization schemes based on shuffling of entity attributes and handling of unseen attributes. Experiments on English datasets where models are trained on the CoNLL dataset, and tested on the TAC-KBP 2010 dataset show that our models outperform baseline models by over 12 points of accuracy. Unlike prior work, our approach also allows for seamlessly combining multiple training datasets. We test this ability by adding both a completely different dataset (Wikia), as well as increasing amount of training data from the TAC-KBP 2010 training set. Our models perform favorably across the board.
Extracting structured clinical information from free-text radiology reports can enable the use of radiology report information for a variety of critical healthcare applications. In our work, we present RadGraph, a dataset of entities and relations in full-text chest X-ray radiology reports based on a novel information extraction schema we designed to structure radiology reports. We release a development dataset, which contains board-certified radiologist annotations for 500 radiology reports from the MIMIC-CXR dataset (14,579 entities and 10,889 relations), and a test dataset, which contains two independent sets of board-certified radiologist annotations for 100 radiology reports split equally across the MIMIC-CXR and CheXpert datasets. Using these datasets, we train and test a deep learning model, RadGraph Benchmark, that achieves a micro F1 of 0.82 and 0.73 on relation extraction on the MIMIC-CXR and CheXpert test sets respectively. Additionally, we release an inference dataset, which contains annotations automatically generated by RadGraph Benchmark across 220,763 MIMIC-CXR reports (around 6 million entities and 4 million relations) and 500 CheXpert reports (13,783 entities and 9,908 relations) with mappings to associated chest radiographs. Our freely available dataset can facilitate a wide range of research in medical natural language processing, as well as computer vision and multi-modal learning when linked to chest radiographs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا