Do you want to publish a course? Click here

Flexible Piecewise Curves Estimation for Photo Enhancement

101   0   0.0 ( 0 )
 Added by Chongyi Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper presents a new method, called FlexiCurve, for photo enhancement. Unlike most existing methods that perform image-to-image mapping, which requires expensive pixel-wise reconstruction, FlexiCurve takes an input image and estimates global curves to adjust the image. The adjustment curves are specially designed for performing piecewise mapping, taking nonlinear adjustment and differentiability into account. To cope with challenging and diverse illumination properties in real-world images, FlexiCurve is formulated as a multi-task framework to produce diverse estimations and the associated confidence maps. These estimations are adaptively fused to improve local enhancements of different regions. Thanks to the image-to-curve formulation, for an image with a size of 512*512*3, FlexiCurve only needs a lightweight network (150K trainable parameters) and it has a fast inference speed (83FPS on a single NVIDIA 2080Ti GPU). The proposed method improves efficiency without compromising the enhancement quality and losing details in the original image. The method is also appealing as it is not limited to paired training data, thus it can flexibly learn rich enhancement styles from unpaired data. Extensive experiments demonstrate that our method achieves state-of-the-art performance on photo enhancement quantitively and qualitatively.



rate research

Read More

Current algorithmic approaches for piecewise affine motion estimation are based on alternating motion segmentation and estimation. We propose a new method to estimate piecewise affine motion fields directly without intermediate segmentation. To this end, we reformulate the problem by imposing piecewise constancy of the parameter field, and derive a specific proximal splitting optimization scheme. A key component of our framework is an efficient one-dimensional piecewise-affine estimator for vector-valued signals. The first advantage of our approach over segmentation-based methods is its absence of initialization. The second advantage is its lower computational cost which is independent of the complexity of the motion field. In addition to these features, we demonstrate competitive accuracy with other piecewise-parametric methods on standard evaluation benchmarks. Our new regularization scheme also outperforms the more standard use of total variation and total generalized variation.
Automated analysis of mouse behaviours is crucial for many applications in neuroscience. However, quantifying mouse behaviours from videos or images remains a challenging problem, where pose estimation plays an important role in describing mouse behaviours. Although deep learning based methods have made promising advances in human pose estimation, they cannot be directly applied to pose estimation of mice due to different physiological natures. Particularly, since mouse body is highly deformable, it is a challenge to accurately locate different keypoints on the mouse body. In this paper, we propose a novel Hourglass network based model, namely Graphical Model based Structured Context Enhancement Network (GM-SCENet) where two effective modules, i.e., Structured Context Mixer (SCM) and Cascaded Multi-Level Supervision (CMLS) are subsequently implemented. SCM can adaptively learn and enhance the proposed structured context information of each mouse part by a novel graphical model that takes into account the motion difference between body parts. Then, the CMLS module is designed to jointly train the proposed SCM and the Hourglass network by generating multi-level information, increasing the robustness of the whole network.Using the multi-level prediction information from SCM and CMLS, we develop an inference method to ensure the accuracy of the localisation results. Finally, we evaluate our proposed approach against several baselines...
235 - Yixiao Guo , Jiawei Liu , Guo Li 2021
Estimating human pose is an important yet challenging task in multimedia applications. Existing pose estimation libraries target reproducing standard pose estimation algorithms. When it comes to customising these algorithms for real-world applications, none of the existing libraries can offer both the flexibility of developing custom pose estimation algorithms and the high-performance of executing these algorithms on commodity devices. In this paper, we introduce Hyperpose, a novel flexible and high-performance pose estimation library. Hyperpose provides expressive Python APIs that enable developers to easily customise pose estimation algorithms for their applications. It further provides a model inference engine highly optimised for real-time pose estimation. This engine can dynamically dispatch carefully designed pose estimation tasks to CPUs and GPUs, thus automatically achieving high utilisation of hardware resources irrespective of deployment environments. Extensive evaluation results show that Hyperpose can achieve up to 3.1x~7.3x higher pose estimation throughput compared to state-of-the-art pose estimation libraries without compromising estimation accuracy. By 2021, Hyperpose has received over 1000 stars on GitHub and attracted users from both industry and academy.
The paper presents a novel method, Zero-Reference Deep Curve Estimation (Zero-DCE), which formulates light enhancement as a task of image-specific curve estimation with a deep network. Our method trains a lightweight deep network, DCE-Net, to estimate pixel-wise and high-order curves for dynamic range adjustment of a given image. The curve estimation is specially designed, considering pixel value range, monotonicity, and differentiability. Zero-DCE is appealing in its relaxed assumption on reference images, i.e., it does not require any paired or unpaired data during training. This is achieved through a set of carefully formulated non-reference loss functions, which implicitly measure the enhancement quality and drive the learning of the network. Our method is efficient as image enhancement can be achieved by an intuitive and simple nonlinear curve mapping. Despite its simplicity, we show that it generalizes well to diverse lighting conditions. Extensive experiments on various benchmarks demonstrate the advantages of our method over state-of-the-art methods qualitatively and quantitatively. Furthermore, the potential benefits of our Zero-DCE to face detection in the dark are discussed. Code and model will be available at https://github.com/Li-Chongyi/Zero-DCE.
82 - Rui Li , Qing Mao , Pei Wang 2020
Self-supervised depth estimation has shown its great effectiveness in producing high quality depth maps given only image sequences as input. However, its performance usually drops when estimating on border areas or objects with thin structures due to the limited depth representation ability. In this paper, we address this problem by proposing a semantic-guided depth representation enhancement method, which promotes both local and global depth feature representations by leveraging rich contextual information. In stead of a single depth network as used in conventional paradigms, we propose an extra semantic segmentation branch to offer extra contextual features for depth estimation. Based on this framework, we enhance the local feature representation by sampling and feeding the point-based features that locate on the semantic edges to an individual Semantic-guided Edge Enhancement module (SEEM), which is specifically designed for promoting depth estimation on the challenging semantic borders. Then, we improve the global feature representation by proposing a semantic-guided multi-level attention mechanism, which enhances the semantic and depth features by exploring pixel-wise correlations in the multi-level depth decoding scheme. Extensive experiments validate the distinct superiority of our method in capturing highly accurate depth on the challenging image areas such as semantic category borders and thin objects. Both quantitative and qualitative experiments on KITTI show that our method outperforms the state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا