Space-Constrained Arrays for Massive MIMO


Abstract in English

We analyse the behaviour of a massive multi-user MIMO (MU-MIMO) system comprising a base station (BS) equipped with one of five different antenna topologies for which the spatial aperture is either unconstrained, or space-constrained. We derive the normalized mean interference (NMI) with a ray-based channel model, as a metric for topology comparison in each of the two cases. Based on the derivation for a horizontal uniform rectangular array (HURA) in [1], we provide closed-form NMI equations for the uniform linear array (ULA) and uniform circular array (UCirA). We then derive the same for a vertical URA (VURA) and uniform cylindrical array (UCylA). Results for the commonly-considered unconstrained case confirm the prior understanding that topologies with wider azimuth footprints aid performance. However, in the space-constrained case performance is dictated by the angular resolution afforded by the topology, particularly in elevation. We confirm the behavioural patterns predicted by the NMI by observing the same patterns in the system SINR with minimum mean-squared error (MMSE) processing.

Download