No Arabic abstract
We analyse the behaviour of a massive multi-user MIMO (MU-MIMO) system comprising a base station (BS) equipped with one of five different antenna topologies for which the spatial aperture is either unconstrained, or space-constrained. We derive the normalized mean interference (NMI) with a ray-based channel model, as a metric for topology comparison in each of the two cases. Based on the derivation for a horizontal uniform rectangular array (HURA) in [1], we provide closed-form NMI equations for the uniform linear array (ULA) and uniform circular array (UCirA). We then derive the same for a vertical URA (VURA) and uniform cylindrical array (UCylA). Results for the commonly-considered unconstrained case confirm the prior understanding that topologies with wider azimuth footprints aid performance. However, in the space-constrained case performance is dictated by the angular resolution afforded by the topology, particularly in elevation. We confirm the behavioural patterns predicted by the NMI by observing the same patterns in the system SINR with minimum mean-squared error (MMSE) processing.
Terahertz (THz) communication is considered to be a promising technology for future 6G network. To overcome the severe attenuation and relieve the high power consumption, massive MIMO with hybrid precoding has been widely considered for THz communication. However, accurate wideband channel estimation is challenging in THz massive MIMO systems. The existing wideband channel estimation schemes based on the ideal assumption of common sparse channel support will suffer from a severe performance loss due to the beam split effect. In this paper, we propose a beam split pattern detection based channel estimation scheme to realize reliable wideband channel estimation. Specifically, a comprehensive analysis on the angle-domain sparse structure of the wideband channel is provided by considering the beam split effect. Based on the analysis, we define a series of index sets called as beam split patterns, which are proved to have a one-to-one match to different physical channel directions. Inspired by this one-to-one match, we propose to estimate the physical channel direction by exploiting beam split patterns at first. Then, the sparse channel supports at different subcarriers can be obtained by utilizing a support detection window. This support detection window is generated by expanding the beam split pattern which is determined by the obtained physical channel direction. The above estimation procedure will be repeated path by path until all path components are estimated. The proposed scheme exploits the wideband channel property implied by the beam split effect, which can significantly improve the channel estimation accuracy. Simulation results show that the proposed scheme is able to achieve higher accuracy than existing schemes.
Favorable propagation (FP) and channel hardening (CH) are desired properties in massive multiple-input multiple-output (MIMO) systems. To date, these properties have primarily been analyzed for classical textit{statistical} channel models, or textit{ray-based} models with very specific angular parameters and distributions. This paper presents a thorough mathematical analysis of the asymptotic system behavior for ray-based channels with textit{arbitrary} ray distributions, and considers textit{two} types of antenna array structures at the cellular base station: a uniform linear array (ULA) and a uniform planar array (UPA). In addition to FP and channel hardening, we analyze the textit{large system potential} (LSP) which measures the asymptotic ratio of the expected power in the desired channel to the expected total interference power when both the antenna and user numbers grow. LSP is said to hold when this ratio converges to a positive constant. The results demonstrate that while FP is guaranteed in ray-based channels, CH may or may not occur depending on the nature of the model. Furthermore, we demonstrate that LSP will not normally hold as the expected interference power grows logarithmically for both ULAs and UPAs relative to the power in the desired channel as the system size increases. Nevertheless, we identify some fundamental and attractive properties of massive MIMO in this limiting regime.
Massive MIMO system yields significant improvements in spectral and energy efficiency for future wireless communication systems. The regularized zero-forcing (RZF) beamforming is able to provide good performance with the capability of achieving numerical stability and robustness to the channel uncertainty. However, in massive MIMO systems, the matrix inversion operation in RZF beamforming becomes computationally expensive. To address this computational issue, we shall propose a novel randomized sketching based RZF beamforming approach with low computational complexity. This is achieved by solving a linear system via randomized sketching based on the preconditioned Richard iteration, which guarantees high quality approximations to the optimal solution. We theoretically prove that the sequence of approximations obtained iteratively converges to the exact RZF beamforming matrix linearly fast as the number of iterations increases. Also, it turns out that the system sum-rate for such sequence of approximations converges to the exact one at a linear convergence rate. Our simulation results verify our theoretical findings.
In cell-free massive MIMO networks, an efficient distributed detection algorithm is of significant importance. In this paper, we propose a distributed expectation propagation (EP) detector for cell-free massive MIMO. The detector is composed of two modules, a nonlinear module at the central processing unit (CPU) and a linear module at the access point (AP). The turbo principle in iterative decoding is utilized to compute and pass the extrinsic information between modules. An analytical framework is then provided to characterize the asymptotic performance of the proposed EP detector with a large number of antennas. Simulation results will show that the proposed method outperforms the distributed detectors in terms of bit-error-rate.
Future wireless communications are largely inclined to deploy a massive number of antennas at the base stations (BS) by exploiting energy-efficient and environmentally friendly technologies. An emerging technology called dynamic metasurface antennas (DMAs) is promising to realize such massive antenna arrays with reduced physical size, hardware cost, and power consumption. This paper aims to optimize the energy efficiency (EE) performance of DMAs-assisted massive MIMO uplink communications. We propose an algorithmic framework for designing the transmit precoding of each multi-antenna user and the DMAs tuning strategy at the BS to maximize the EE performance, considering the availability of the instantaneous and statistical channel state information (CSI), respectively. Specifically, the proposed framework includes Dinkelbachs transform, alternating optimization, and deterministic equivalent methods. In addition, we obtain a closed-form solution to the optimal transmit signal directions for the statistical CSI case, which simplifies the corresponding transmission design. The numerical results show good convergence performance of our proposed algorithms as well as considerable EE performance gains of the DMAs-assisted massive MIMO uplink communications over the baseline schemes.