Do you want to publish a course? Click here

Semi-Disentangled Representation Learning in Recommendation System

154   0   0.0 ( 0 )
 Added by Xueqi Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Disentangled representation has been widely explored in many fields due to its maximal compactness, interpretability and versatility. Recommendation system also needs disentanglement to make representation more explainable and general for downstream tasks. However, some challenges slow its broader application -- the lack of fine-grained labels and the complexity of user-item interactions. To alleviate these problems, we propose a Semi-Disentangled Representation Learning method (SDRL) based on autoencoders. SDRL divides each user/item embedding into two parts: the explainable and the unexplainable, so as to improve proper disentanglement while preserving complex information in representation. The explainable part consists of $internal block$ for individual-based features and $external block$ for interaction-based features. The unexplainable part is composed by $other block$ for other remaining information. Experimental results on three real-world datasets demonstrate that the proposed SDRL could not only effectively express user and item features but also improve the explainability and generality compared with existing representation methods.



rate research

Read More

76 - Ziyuan Zhang , Luan Tran , Xi Yin 2019
Gait, the walking pattern of individuals, is one of the most important biometrics modalities. Most of the existing gait recognition methods take silhouettes or articulated body models as the gait features. These methods suffer from degraded recognition performance when handling confounding variables, such as clothing, carrying and view angle. To remedy this issue, we propose a novel AutoEncoder framework to explicitly disentangle pose and appearance features from RGB imagery and the LSTM-based integration of pose features over time produces the gait feature. In addition, we collect a Frontal-View Gait (FVG) dataset to focus on gait recognition from frontal-view walking, which is a challenging problem since it contains minimal gait cues compared to other views. FVG also includes other important variations, e.g., walking speed, carrying, and clothing. With extensive experiments on CASIA-B, USF and FVG datasets, our method demonstrates superior performance to the state of the arts quantitatively, the ability of feature disentanglement qualitatively, and promising computational efficiency.
Unsupervised learning of disentangled representations involves uncovering of different factors of variations that contribute to the data generation process. Total correlation penalization has been a key component in recent methods towards disentanglement. However, Kullback-Leibler (KL) divergence-based total correlation is metric-agnostic and sensitive to data samples. In this paper, we introduce Wasserstein total correlation in both variational autoencoder and Wasserstein autoencoder settings to learn disentangled latent representations. A critic is adversarially trained along with the main objective to estimate the Wasserstein total correlation term. We discuss the benefits of using Wasserstein distance over KL divergence to measure independence and conduct quantitative and qualitative experiments on several data sets. Moreover, we introduce a new metric to measure disentanglement. We show that the proposed approach has comparable performances on disentanglement with smaller sacrifices in reconstruction abilities.
Domain adaptation is an important but challenging task. Most of the existing domain adaptation methods struggle to extract the domain-invariant representation on the feature space with entangling domain information and semantic information. Different from previous efforts on the entangled feature space, we aim to extract the domain invariant semantic information in the latent disentangled semantic representation (DSR) of the data. In DSR, we assume the data generation process is controlled by two independent sets of variables, i.e., the semantic latent variables and the domain latent variables. Under the above assumption, we employ a variational auto-encoder to reconstruct the semantic latent variables and domain latent variables behind the data. We further devise a dual adversarial network to disentangle these two sets of reconstructed latent variables. The disentangled semantic latent variables are finally adapted across the domains. Experimental studies testify that our model yields state-of-the-art performance on several domain adaptation benchmark datasets.
Deep representation learning offers a powerful paradigm for mapping input data onto an organized embedding space and is useful for many music information retrieval tasks. Two central methods for representation learning include deep metric learning and classification, both having the same goal of learning a representation that can generalize well across tasks. Along with generalization, the emerging concept of disentangled representations is also of great interest, where multiple semantic concepts (e.g., genre, mood, instrumentation) are learned jointly but remain separable in the learned representation space. In this paper we present a single representation learning framework that elucidates the relationship between metric learning, classification, and disentanglement in a holistic manner. For this, we (1) outline past work on the relationship between metric learning and classification, (2) extend this relationship to multi-label data by exploring three different learning approaches and their disentangl
This paper challenges the common assumption that the weight $beta$, in $beta$-VAE, should be larger than $1$ in order to effectively disentangle latent factors. We demonstrate that $beta$-VAE, with $beta < 1$, can not only attain good disentanglement but also significantly improve reconstruction accuracy via dynamic control. The paper removes the inherent trade-off between reconstruction accuracy and disentanglement for $beta$-VAE. Existing methods, such as $beta$-VAE and FactorVAE, assign a large weight to the KL-divergence term in the objective function, leading to high reconstruction errors for the sake of better disentanglement. To mitigate this problem, a ControlVAE has recently been developed that dynamically tunes the KL-divergence weight in an attempt to control the trade-off to more a favorable point. However, ControlVAE fails to eliminate the conflict between the need for a large $beta$ (for disentanglement) and the need for a small $beta$. Instead, we propose DynamicVAE that maintains a different $beta$ at different stages of training, thereby decoupling disentanglement and reconstruction accuracy. In order to evolve the weight, $beta$, along a trajectory that enables such decoupling, DynamicVAE leverages a modified incremental PI (proportional-integral) controller, and employs a moving average as well as a hybrid annealing method to evolve the value of KL-divergence smoothly in a tightly controlled fashion. We theoretically prove the stability of the proposed approach. Evaluation results on three benchmark datasets demonstrate that DynamicVAE significantly improves the reconstruction accuracy while achieving disentanglement comparable to the best of existing methods. The results verify that our method can separate disentangled representation learning and reconstruction, removing the inherent tension between the two.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا