Do you want to publish a course? Click here

Nonideal Mixing Effects in Warm Dense Matter Studied with First-Principles Computer Simulations

131   0   0.0 ( 0 )
 Added by Burkhard Militzer
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study nonideal mixing effects in the regime of warm dense matter (WDM) by computing the shock Hugoniot curves of BN, MgO, and MgSiO_3. First, we derive these curves from the equations of state (EOS) of the fully interacting systems, which were obtained using a combination of path integral Monte Carlo calculations at high temperature and density functional molecular dynamics simulations at lower temperatures. We then use the ideal mixing approximation at constant pressure and temperature to rederive these Hugoniot curves from the EOS tables of the individual elements. We find that the linear mixing approximation works remarkably well at temperatures above ~2*10^5 K, where the shock compression ratio exceeds ~3.2. The shape of the Hugoniot curve of each compound is well reproduced. Regions of increased shock compression, that emerge because of the ionization of L and K shell electrons, are well represented and the maximum compression ratio on the Hugoniot curves is reproduced with high precision. Some deviations are seen near the onset of the L shell ionization regime, where ionization equilibrium in the fully interacting system cannot be well reproduced by the ideal mixing approximation. This approximation also breaks down at lower temperatures, where chemical bonds play an increasingly import role. However, the results imply that equilibrium properties of binary and ternary mixtures in the regime of WDM can be derived from the EOS tables of the individual elements. This significantly simplifies the characterization of binary and ternary mixtures in the WDM and plasma phases, which otherwise requires large numbers of more computationally expensive first-principles computer simulations.



rate research

Read More

Using first principles simulations we have investigated the structural and bonding properties of dense fluid oxygen up to 180 GPa. We have found that band gap closure occurs in the molecular liquid, with a slow transition from a semi-conducting to a poor metallic state occurring over a wide pressure range. At approximately 80 GPa, molecular dissociation is observed in the metallic fluid. Spin fluctuations play a key role in determining the electronic structure of the low pressure fluid, while they are suppressed at high pressure.
The ab-initio theory of low-field electronic transport properties such as carrier mobility in semiconductors is well-established. However, an equivalent treatment of electronic fluctuations about a non-equilibrium steady state, which are readily probed experimentally, remains less explored. Here, we report a first-principles theory of electronic noise for warm electrons in semiconductors. In contrast with typical numerical methods used for electronic noise, no adjustable parameters are required in the present formalism, with the electronic band structure and scattering rates calculated from first-principles. We demonstrate the utility of our approach by applying it to GaAs and show that spectral features in AC transport properties and noise originate from the disparate time scales of momentum and energy relaxation, despite the dominance of optical phonon scattering. Our formalism enables a parameter-free approach to probe the microscopic transport processes that give rise to electronic noise in semiconductors.
209 - Bradley A. Foreman 2007
This paper presents a numerical implementation of a first-principles envelope-function theory derived recently by the author [B. A. Foreman, Phys. Rev. B 72, 165345 (2005)]. The examples studied deal with the valence subband structure of GaAs/AlAs, GaAs/Al(0.2)Ga(0.8)As, and In(0.53)Ga(0.47)As/InP (001) superlattices calculated using the local density approximation to density-functional theory and norm-conserving pseudopotentials without spin-orbit coupling. The heterostructure Hamiltonian is approximated using quadratic response theory, with the heterostructure treated as a perturbation of a bulk reference crystal. The valence subband structure is reproduced accurately over a wide energy range by a multiband envelope-function Hamiltonian with linear renormalization of the momentum and mass parameters. Good results are also obtained over a more limited energy range from a single-band model with quadratic renormalization. The effective kinetic-energy operator ordering derived here is more complicated than in many previous studies, consisting in general of a linear combination of all possible operator orderings. In some cases the valence-band Rashba coupling differs significantly from the bulk magnetic Luttinger parameter. The splitting of the quasidegenerate ground state of no-common-atom superlattices has non-negligible contributions from both short-range interface mixing and long-range dipole terms in the quadratic density response.
Simulation of warm dense matter requires computational methods that capture both quantum and classical behavior efficiently under high-temperature, high-density conditions. Currently, density functional theory molecular dynamics is used to model electrons and ions, but this methods computational cost skyrockets as temperatures and densities increase. We propose finite-temperature potential functional theory as an in-principle-exact alternative that suffers no such drawback. We derive an orbital-free free energy approximation through a coupling-constant formalism. Our density approximation and its associated free energy approximation demonstrate the methods accuracy and efficiency.
We investigate the harmonic and anharmonic contributions to the phonon spectrum of lead telluride, and perform a complete characterization of how the anharmonic effects dominate the phonons in PbTe as temperature increases. This effect is the strongest factor in the favorable thermoelectric properties of PbTe: an optical-acoustic phonon band crossing reduces the speed of sound and the intrinsic thermal conductivity. We present the detailed temperature dependence of the dispersion relation and compare our calculated neutron scattering cross section with recent experimental measurements. We analyze the thermal resistivitys variation with temperature and clarify misconceptions about existing experimental literature. This quantitative prediction opens the way to phonon phase space engineering, to tailor the lifetimes of crucial heat carrying phonons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا